期刊文献+

基于语义处理技术的信息检索模型 被引量:9

Information Retrieval Model Based on Semantic Processing Technology
下载PDF
导出
摘要 信息爆炸是当今信息社会的一大特点,如何在海量的信息中有效地找到所需信息因而成为了一个关键问题,语义检索技术是解决这一问题非常有潜力的方法。本文对信息检索中的若干关键问题进行了研究,提出了基于语义处理技术的信息检索模型——SPTIR,该模型主要包括以下关键技术:基于词义消歧的语义查询扩展、基于词汇语义相关性度量的查询优化和基于文档语义相关性的检索结果重排序。最后使用大型测试数据集和多项性能指标对SPTIR模型的检索性能进行了试验评估,实验结果充分验证了SPTIR模型的竞争优势以及该模型采用的各项语义处理技术对提高检索性能所起的积极作用。 We are in an information age that is mainly characterized by information explosion, and how to find more precise search results in the ocean of information becomes a key issue. Semantic search technique, fortunately, is a hopeful way to solve this problem. Several key problems in Information Retrieval (IR) domain are addressed and a novel Semantic Processing Technology based Information Retrieval (SPTIR) model is proposed in this dissertation. SPTIR includes the following key technologies : Word Sense Disambiguation (WSD) based semantic query expansion, word semantic relatedness based query optimization and document semantic relevance based search results re-ranking. Finally large test data sets and a number of performance indicators are used to test the retrieval performance of the proposed model, and the experimental results fully validated the competitive advantage of SPTIR as well as the active role of semantic processing techniques adopted in improving the retrieval performance.
作者 王瑞琴
出处 《情报学报》 CSSCI 北大核心 2012年第1期9-17,共9页 Journal of the China Society for Scientific and Technical Information
基金 浙江省自然科学基金项目(Y1080372) 温州市科技计划项目(S20090014).
关键词 词义消歧 语义相关性 查询扩展 查询优化 检索结果重排序 word sense disambiguation, semantic relatedness, query expansion, query optimization, search results re-ranking
  • 相关文献

参考文献17

  • 1Manning C,Raghavan P, Schiitze H. Introduction to Infor- mation Retrieval [ M ]. England: Cambridge University Press, 2008.
  • 2Lee T B. Semantic Web Road Map[ R]. World Wide Web Consortium, 1998.
  • 3Bao S, Wu X, Fei B, et al. Optimizing Web Search Using Social Annotation. Proceedings of the World Wide Web Conference [ C ]. Banff, Canada,2007:501-510.
  • 4李卫疆,Zhao,Tiejun,Wang,Xian'gang.A new approach to query expansion in information retrieval[J].High Technology Letters,2008,14(1):77-80. 被引量:2
  • 5Chang Y, Ounis I, Kim M. Query reformulation using automatically generated query concepts from a document space [ J ]. Information Processing and Management,2006,4Z(Z) :4~3--46~.
  • 6Han L, Chen G. HQE:A hybrid method for query expa- nsion[ J ]. Expert Systems with Applications, 2009, 36 (4) :7985-7991.
  • 7Cai D, Rijsbergen C J. Learning semantic relatedness from term discrimination information [ J ]. Expert Systems with Applications,2009,36 ( 2 ) : 1860-1875.
  • 8Jorge G, Eduardo M. Web-based Measure of Semantic Relatedness [ C ]//Proceedings of the International Conference on Web Information Systems Engineering Nancy, France, 2008 : 136-150.
  • 9Budanitsky A, Hirst G. Evaluating wordNet-based meas- ures of lexical semantic relatedness [ J ]. Journal of Computational Linguistics ,2006,32( 1 ) : 1-35.
  • 10Strube M, Ponzetto S P. WikiRelate! Computing Sem- antic Relatedness using Wikipedia[ C ]//Proceedings of the Association for the Advancement of Artificial Intelligence, Boston, Massachusetts ,2006 : 1419-1424.

二级参考文献4

共引文献1

同被引文献193

引证文献9

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部