期刊文献+

拟南芥野生型与隐花素突变体光调节的蛋白质鉴定与聚类分析(英文)

Proteomic Analysis and Cluster Analysis of Light Responses in Arabidopsis thaliana Wild-type and Cryptochrome Mutants
下载PDF
导出
摘要 光是控制植物生长发育十分重要的环境因子之一.隐花素是植物的蓝光受体,在植物中调节多种光形态建成,包括抑制下胚轴的伸长、子叶的伸展和调节植物的开花时间等,但隐花素依赖蓝光调节光形态建成的分子机制尚不清楚.本文采用比较蛋白质组学方法研究了在持续蓝光和红光下生长的拟南芥隐花素双突变体cry1cry2和野生型幼苗的全蛋白图谱.采用基质辅助激光解吸飞行时间串联质谱(MALDI-TOF-TOF)进行肽质谱指纹图谱分析.在cry1cry2和野生型中鉴定了71个差异蛋白点.这些差异蛋白质反应光的变化可以形成6类,结果表明,光调节隐花素是通过控制许多相关基因的表达而实现的,为进一步研究拟南芥隐花素的光反应机制提供一些有用的信息.研究表明,蛋白质表达图谱可用于研究各种突变体在不同光照条件下光应答之间的关系. Light is an essential environmental factor for plant growth and development.Cryptochromes are blue light receptors that mediate the inhibition of hypocotyl elongation and the stimulation of floral initiation in Arabidopsis thaliana,however,the molecular mechanism associated with the lightdependency of cryptochromes remains unclear.We studied the protein expressions of the wild-type and the cry1cry2 mutant Arabidopsis seedlings grown under continuous blue light or red light by comparative proteomics.Using MALDI-TOF-TOF-MS,71 differentially expressed belong to six coregulatory clusters were identified.The results indicated that light control of cryptochromes was co-regulated by many related genes,which might be involved in the light response mechanism of Arabidopsis cryptochromes and deserved subsequent studies.This study also demonstrated that protein profiling could be used to compare the light responses between different lights with different mutants.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2012年第1期42-52,共11页 Chinese Journal of Biochemistry and Molecular Biology
基金 Supported by Grant of Hunan Provincial Natural Science Foundation of China(No.11JJ6018) Program for Excellent Talents in Hunan Normal University(No.ET30908) National Natural Science Foundation of China(No.30871325,31071076)~~
关键词 拟南芥 隐花素 蛋白质组学 聚类分析 Arabidopsis thaliana cryptochromes proteomics cluster analysis
  • 相关文献

参考文献46

  • 1Quail P H, Boylan M T, Parks B M, et al. Phytochromes: photosensory perception and signal transduction[J]. Science,1995, 268(5211):675-680.
  • 2Fankhauser C, Chory J. light control of plant development[J]. Annu Rev Cell Dev Biol, 1997, 13:203-229.
  • 3Nagy F, Sch?fer E. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants[J]. Annu Rev Plant Biol, 2002, 53:329-355.
  • 4Lin C. Blue light receptors and signal transduction[J]. Plant Cell, 2002, 14 S:207-225.
  • 5Franklin K A,Whitelam G C. Light signals, phytochromes and cross-talk with other environmental cues[J]. J Exp Bot, 2004, 55(395):271-276.
  • 6Koornneef M, Rolff E, Spruit C J P. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L) [J]. Heynh Z P?anzen Physiol, 1980, 100:147-160.
  • 7Ahmad M, Cashmore A R. HY4 gene of A.thaliana encodes a protein with characteristics of a blue-light photoreceptor[J].Nature, 1993, 366(6451):162-166.
  • 8EI-Din EI-Assal S, Alonso-Blanco C, Peeters A J, et al. A QTL for ?owering time in Arabidopsis reveals a novel allele of CRY2[J]. Nat Genet, 2001, 29(4): 435-440.
  • 9Kleine T, Lockhart P, Batschauer A. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles[J].Plant J, 2003,35 (1):93-103.
  • 10Selby C P, SancarA. A cryptochrome /photolyase class of enzymes with single-stranded DNA-speci?c photolyase activity[J]. Proc Natl Acad Sci USA, 2006, 103 (47):17696-17700.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部