期刊文献+

TWIP钢Fe-23Mn-2Al-0.2C的组织及拉伸变形机制 被引量:4

Microstructure and tensile deformation mechanism of a Fe-23Mn-2Al-0.2C TWIP steel
原文传递
导出
摘要 研究了TWIP钢Fe-23Mn-2Al-0.2C固溶处理后的组织演变和拉伸变形行为,并对其变形机制进行了探讨。结果表明:随固溶温度升高,实验钢的晶粒尺寸逐渐增大,屈服强度和抗拉强度均降低,伸长率增大,强塑积先增大后减小,在900℃时达到最高;实验钢的拉伸变形呈现连续屈服,同时随固溶温度升高,加工硬化速率(dσ/dε)与真应变(ε)的变化关系由2阶段变为3阶段。通过OM和TEM观察显示,随着晶粒尺寸的增加,变形过程中形变孪晶数量增多,孪晶诱导塑性(TWIP)效应增大。 Tensile deformation behavior and microstructural evolution of Fe-23Mn-2A1-0.2C TWIP steel after solution treatment were studied and the deformation mechanism was discussed. The results show that as increase of the solution temperature, grain size of the steel gradually increases, its yield strength and tensile strength decrease, while plasticity increases. The product of strength and plasticity first increases and then decreases with the temperature increase from 700℃ to 1100 ℃ , and reaches the peak value at 900 ℃. Deformation behavior with three stages was observed for the steel solutiontreated at high solution temperatures. While at low temperature, there exist only two stages in the deformation behavior for the dependence of strain hardening rate on true strain. With increasing the grain size, more deformation twins are observed in the deformed steel and the effect of twininz induced plasticity (TWIP) increases.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2012年第1期94-98,共5页 Transactions of Materials and Heat Treatment
基金 国家重点基础研究发展计划项目(2011CB606306-2) 中央高校基本科研业务费(N100507003)
关键词 TWIP钢 晶粒尺寸 加工硬化速率 TWIP效应 TWIP steel grain size strain hardening rate TWIP effect
  • 相关文献

参考文献18

  • 1Frommeyer G,Brüx U,Neumann P.Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J].ISIJ International,2003,43(3):438-446.
  • 2Grssel O,Kruger L,Frommeyer G.High strength Fe-Mn-(Al,Si)TRIP/TWIP steels development properties application[J].International Journal of Plasticity,2000,16(10-11):1391-1409.
  • 3Vercammen S,Blanpain B,DeCooman B C.Cold rolling behavior of an austenitic Fe-30Mn-3Si-3Al TWIP steel:the importance of deformation twinning[J].Acta Materialia,2004,52(7):2005-2012.
  • 4Bouaziz O,Guelton N.Modelling of TWIP effect on work-hardening[J].Materials Science and Engineering A,2001,319-321(12):246-249.
  • 5Shiekhelsouk M N,Favier V,Inal K,et al.Modelling the behaviour of polycrystalline austenitic steel with twinning-induced plasticity effect[J].International Journal of Plasticity,2009,25(1):105-133.
  • 6Christian J W,Mahajan S.Deformation twinning[J].Progress in Materials Science,1995,39(1-2):1-157.
  • 7Ueji R,Tsuchida N,Terada D,et al.Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure[J].Scripta Materialia,2008,59(9):963-966.
  • 8Ehab E D,Surya R K,Roger D D.Influence of deformation path on the strain hardening behavior and microstructure evolution in low SFE FCC metals[J].International Journal of Plasticity,2001,17(9):1245-1265.
  • 9王书晗,刘振宇,王国栋.TWIP钢中晶粒尺寸对TWIP效应的影响[J].金属学报,2009,45(9):1083-1090. 被引量:29
  • 10Zhenli MI,Di TANG,Ling YAN,Jin GUO.High-Strength and High-Plasticity TWIP Steel for Modern Vehicle[J].Journal of Materials Science & Technology,2005,21(4):451-454. 被引量:25

二级参考文献58

  • 1黄宝旭,王晓东,戎咏华,王利.TWIP钢研究的现状与展望[J].热处理,2005,20(4):4-6. 被引量:23
  • 2Fromrneyer C, Briix U, Neumann P. ISIJ Int, 2003; 43: 438.
  • 3Grassel O, Kriiger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16:1391.
  • 4Vercammen S, Blanpai B, Cooman B C D, Wollants P. Acta Mater, 2004; 52:2005.
  • 5Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319-321: 246.
  • 6Shiekhelsouk M N, Favier V, Inal K, Cherkaoui M. Int J Plast, 2009; 25:105.
  • 7Christian J W, Mahajan S. Pro Mater Sci, 1995; 39:1.
  • 8Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K. Scr Mater, 2008; 59:963.
  • 9Danaf E E, Kalidindi S R, Doherty R D. Int J Plast, 2001; 17:1245.
  • 10Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304: 422.

共引文献69

同被引文献26

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部