期刊文献+

基于ReCorre特征优化的气阀故障诊断方法

Diagnosis Method for Air Valve Failure Based on ReCorre Characteristics Optimization
下载PDF
导出
摘要 振动信号包含信息丰富,反应状态直接,振动法是压缩机气阀故障诊断常用方法。振动信号的特征参数繁多,特征向量选择是否合理对故障诊断结果准确性影响很大。研究ReCorre方法对气阀振动信号特征参数进行优化选择,再通过神经网络进行分类识别。实例表明,基于特征优化的模糊神经网络分类识别结果正确率高,识别结果受数据来源影响小,是一种较好的气阀故障诊断方法。 Vibration signal contains rich information and reactive state directly. Vibration method is commonly used to diagnoze air valve failure in compressor. There are many characteristic parameters of vibration signal, so correctly selecting charicteristic vector is greatly important for the accuracy of failure diagnosis results. ReCorre method is studied to carry out the optimized selection of characteristic parameters of air valve' s vibration signal. Then a neural network is applied to carry out the classification and identification. The practical example shows that the classification and identification results of fuzzy neural network based on characteristic optimization have high correct rate and the identification results have been affected a little by data resource ,which is a better diagnosis method for air valve failure.
出处 《压缩机技术》 2011年第6期13-15,22,共4页 Compressor Technology
关键词 特征优化 神经网络 气阀 故障诊断 characteristic optimization neural network air valve failure diagnosis
  • 相关文献

参考文献6

二级参考文献28

  • 1刘红星,林京,沈五娣,屈梁生.往复式压缩机气阀故障的振动诊断方法[J].压缩机技术,1996(1):32-34. 被引量:37
  • 2陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 3金光熹 杨绍侃.压缩机可靠性[M].机械工业出版社,1988..
  • 4张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994..
  • 5刘卫华.往复压缩机热力参数故障诊断法研究[M].西安:西安交通大学图书馆,2000,9..
  • 6边肇祺.模式识别[M].清华大学出版社,1999..
  • 7董作材 李忠民.件复压缩机故障的排除[M].北京:石油化工出版社,1975..
  • 8Langley P. Selection of relevant features in machine learning [A].In: Greiner R,eds.Proc AAAI Fall Symposium on Relevance [C].New Orleans:AAAI Press,1994.140-144.
  • 9Kohavi R, John G. Wrappers for feature subset selection [J]. Artificial Intelligence, 1997, 97:273-324.
  • 10Almullim H, Dietterich T. Learning with many irrelevant features [A].Proceedings of Ninth National Conference on Artificial Intelligence [C]. New Orleans:AAAI Press,1991.547-552.

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部