期刊文献+

基于随机滤波的探地雷达成像方法 被引量:1

Ground Penetrating Radar Imaging via Random Filtering
下载PDF
导出
摘要 探地雷达是一种超宽带雷达系统,若按传统的奈奎斯特采样,雷达回波信号需要大量空间存储。压缩感知可以实现利用少量的测量值对稀疏信号进行重构,其中最为关键的是测量矩阵和重构算法的选择。本文将压缩感知应用于探地雷达成像,并利用随机滤波的思想选择测量矩阵,可以有效减少测量矩阵中非零值的个数。利用正交匹配追踪算法对信号进行重构,算法简单,降低了数据的存储量和运算复杂度,该算法同样可以对时间和空间上同时压缩的数据进行成像。最后,本文给出基于时间连续信号的GPR接收机一种CS实现方案。仿真结果表明,本文提出的成像方法可以以少量数据精确地对信号进行重构,并且运算量少。 Ground penetrating radar(GPR) is an ultra-wideband radar system,whose echo signal requires a lot of space for storage if using the conventional Nyquist sampling.However,the theory of compressive sensing(CS) enables the reconstruction of sparse signals from a small set of measurements,whereas the key point is the selection of the measurement matrix and the reconstruction algorithm.This paper presents an imaging algorithm for GPR based on CS.The measurement matrix is selected via random filters, which effectively reduces the number of non-zero elements in the measurement matrix.The simple Orthogonal Matching Pursuit(OMP) algorithm is adopted to reconstruct signal with less data storage and lower computational complexity.The proposed algorithm can also apply for the data compressed in both the temporal and spatial domain.Finally,this paper presents a CS scheme for GPR receiver based on time-continuous signal.Some simulation experiments are taken on testing the proposed method on GPR imaging,and the results are provided to illustrate the performance of this method.
出处 《信号处理》 CSCD 北大核心 2011年第12期1838-1843,共6页 Journal of Signal Processing
基金 国家自然科学基金(60879019) 民航总局科技基金(MHRD0701)资助课题
关键词 探地雷达 压缩感知 雷达成像 随机滤波 正交匹配追踪 Ground Penetrating Radar Compressive Sensing Radar Imaging Random Filtering Orthogonal Matching Pursuit
  • 相关文献

参考文献9

  • 1栗毅,黄春琳,雷文太.探地雷达理论与应用[M].北京:科学出版社,2006.
  • 2R.B.Wu,K.L.Gu,J.Li.Propagation velocity uncertainty on GPR SAR processing[J].IEEE Transaction on Aerospace and Electronic Systems,2003,39(3):849-861.
  • 3J.Y Song,Q.H Liu,P.Torrione.Two dimensional and three dimensional NUFFT migration method for landmine detection using ground penetrating radar[J].IEEE Transaction on Geoscience and Remote Sensing,2006,44 (6):1462-1469.
  • 4余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,32(1):12-16. 被引量:49
  • 5Gurbuz A C,McClellan J H and Waymond R S.Compressive sensing for GPR imaging[C].// Conference Record of the Forty-First Asilomar Conference on Signals,Systems and Computers.USA,2007,4(7):2223-2227.
  • 6Tropp J A,Wakin M B,Duarte M F,et al.Random filters for compressive sampling and reconstruction[C].International Conference on Acoustics,Speech and Signal Processing.France:IEEE Press,2006:872-875.
  • 7S.Mala著.杨力华,戴道清,黄文良等译.信号处理的小波导引[M].北京:机械工业出版社.2002.
  • 8E.Candès,J.Romberg,T.Terence.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans on Information Theory,2006,52(2):489-509.
  • 9R.Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.

二级参考文献18

  • 1Daniels D J. Surface-penetrating radar[J]. Electronics and Communication Engineering Jourual, 1996, 8(4): 165-182.
  • 2Fang G Y. The research activities of ultrawide-band (UWB) radar in China[C]. IEEE International Conference on Ultra-Wideband, Marina Mandarin Hotel, Singapore, Sept. 24-26, 2007: 43-45.
  • 3Xu X and Miller E L. Optimization of migration method to locate buried object in lossy medium[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, Jun. 24-28, 2002: 337-339.
  • 4Leuschen C J and Plumb R G. A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 929-936.
  • 5Carin L, Geng N, and McClure M, et al.. Ultra-wide-band synthetic-aperture radar for mine-field detection[J]. IEEE Antennas and Propagation Magazine, 1999, 41(1): 18-33.
  • 6Hayakawa H, Nadamoto A, and Uesaka S. 3D radar imaging of buried objects using arbitrary scaning GPR[C]. Eighth International Conference on Ground Penetrating Radar, Queensland, Australia, May 23-26, 2000: 273-276.
  • 7Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 8Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006,59(8): 1207-1223.
  • 9Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 10Candes E J. Compressive sampling[C]. International Congress of Mathematicians, Madrid, Spain, 2006, 3: 1433-1452.

共引文献59

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部