期刊文献+

单项代数的一种推广 被引量:1

A GENERALIZATION OF MONOMIAL ALGEBRAS
下载PDF
导出
摘要 本文将单项代数推广到一般的Artin代数上,定义了一类新的代数-无交换关系的代数,并对其性质进行了研究. A kind of new algebras which is a generalization of monomial algebras is introduced and investigated in this paper.
出处 《南京大学学报(数学半年刊)》 CAS 2011年第2期195-205,共11页 Journal of Nanjing University(Mathematical Biquarterly)
基金 湖南省教育厅重点研究课题(资助号:08A057)
关键词 单项代数 ARTIN代数 无交换关系代数 monomial algebras, artin algebras, algebras with no commutative relations
  • 相关文献

参考文献9

  • 1Auslander M, Reiten I and Smalo S O. Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press, 1995.
  • 2Green E L, Kirkman E and Kuzmanovich J. Finitistic Dimensions of Finite Dimensional Monomial Algebras. J. Algebra, 1991, 136: 37-50.
  • 3Igusa K and Zacharia D. Syzygy Pairs in a Monomial Algebra. Proc. Amer. Math. Soc., 1990, 108: 601-604.
  • 4Anick D. On Monomial Algebras of Finite Alobal Dimension. Trans. A. M. S., 1985, 291(1): 291-310.
  • 5Anick D and Green E L. On the Homology of Quotients of Path Algebra. Comm. in Algebra, 1987, 15(1): 309-341.
  • 6Green E L, Happel D and Zacharia D. Projective Resolutions over Artin Algebras with Zero Rela- tions. Illinois J. Math., 1985, 92: 180-190.
  • 7Wilson G V. The Cartan Map on Categories of Graded Modules. J. Algebra, 1983, 85: 390-398.
  • 8Zimmermann-Huisgen B. Predicting Syzygies over Monomial Relations Algebras. Manuscipta Math., 1991, 70: 157-182.
  • 9Burgess W D, Fuller K R, Green E L and Zacharia D. Left Monomial Rings- a Generalization of Monomial Algebras. Osaka J. Math., 1993, 30: 543-558.

同被引文献7

  • 1Igusa K and Zacharia D. Syzygy Pairs in a Monomial Algebra. Proc. Amer. Math. Soc., 1990, 108: 601-604.
  • 2Grenn E L and Zimmermann-Huisgen B. Finitistic Dimension of Artinian Rings with Vanishing Radical Cube. Math. Z., 1991, 206: 505-526.
  • 3Anick D. On Monomial Algebras of Finite Global Dimension. Trans. A.M.S., 1985, 291(1): 291-310.
  • 4Anick D and Grenn E L. On the Homology of Quotients of Path Algebras. Comm. in Algebra, 1987, 15(1-2): 309-341.
  • 5Auslander M, Reiten I and Smal S. Representation Theory of Artin Algebras. London: Cambridge University Press., 1995.
  • 6Nakayama T. On Algebras with Complete Homology. Abh. Math. Sem. Univ. Hamburg, 1958, 22 300-307.
  • 7Guo J Y. Auslander Reiten Conjecture and Functor Jk2 . Arch. Math., 1998, 70: 351-356.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部