期刊文献+

Emotional speaker recognition based on prosody transformation 被引量:1

基于韵律变换的情感说话人识别(英文)
下载PDF
导出
摘要 A novel emotional speaker recognition system (ESRS) is proposed to compensate for emotion variability. First, the emotion recognition is adopted as a pre-processing part to classify the neutral and emotional speech. Then, the recognized emotion speech is adjusted by prosody modification. Different methods including Gaussian normalization, the Gaussian mixture model (GMM) and support vector regression (SVR) are adopted to define the mapping rules of F0s between emotional and neutral speech, and the average linear ratio is used for the duration modification. Finally, the modified emotional speech is employed for the speaker recognition. The experimental results show that the proposed ESRS can significantly improve the performance of emotional speaker recognition, and the identification rate (IR) is higher than that of the traditional recognition system. The emotional speech with F0 and duration modifications is closer to the neutral one. 为了解决由情感变化引起的说话人识别性能下降问题,提出了一种新的情感说话人识别系统. 首先,通过引入情感识别作为前端处理模块,对中性语音和情感语音进行分类. 然后,对情感语音进行韵律修正,分别采用高斯归一化、高斯混合模型( GMM) 和支持向量回归( SVR) 等方法建立情感语音和中性语音的基频映射规则,并根据平均线性变化率对时长进行了修正. 最后,对韵律修正后的情感语音进行识别. 实验结果表明,提出的情感说话人识别系统可以有效地提高情感说话人识别的性能,识别率相比传统方法有了显著的提高. 并且通过基频和时长修正的情感语音更接近于中性语音.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期357-360,共4页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China (No.60872073, 60975017, 51075068) the Natural Science Foundation of Guangdong Province (No. 10252800001000001) the Natural Science Foundation of Jiangsu Province (No. BK2010546)
关键词 emotion recognition speaker recognition F0 transformation duration modification 情感识别 说话人识别 基频转换 时长修正
  • 相关文献

参考文献10

  • 1Scherer K L,Johnstone T,Klasmeyer G,et al.Can automatic speaker verification be improved by training the algorithms on emotional speech?. International Conference on Spoken Language Processing . 2000
  • 2Wu Z H,Li D D,Yang Y C.Rules based feature modification for affective speaker recognition. International Conference on Acoustics,Speech,and Signal Processing . 2006
  • 3Campbell W M,Sturim D E,Reynolds D A,et al.SVM based speaker verification using a GMM supervector kernel and NAP variability compensation. International Conference on Acoustics,Speech,and Signal Processing . 2006
  • 4Hu H,Xu M M,Wu W.GMM supervector based SVM with spectral features for speech emotion recognition. International Conference on Acoustics,Speech,and Signal Processing . 2007
  • 5Sinha R,Ghai S.On the use of pitch normalization for improving children’’s speech recognition [C ]. 10th Annual Conference of the International Speech Communication Association . 2009
  • 6Wu Z Z,Kinnunen T,Chng E S,et al.Text-independent F0 transformation with non-parallel data for voice conversion. 11th Annual Conference of the International Speech Communication Association . 2010
  • 7SHAN Zhenyu,YANG Yingchun,YE Ruizhi.Natural-emotion GMM transformation algorithm foremotional speaker recognition. Proc of Interspeech 2007 . 2007
  • 8Debasish B,Pal S,Patranabis D.C.Support Vector Regression. Neural Information Processing . 2007
  • 9Reynolds D A,Quatieri T F,Dunn R B.Speaker verification using adapted Gaussian mixture models. Digital Signal Processing . 2000
  • 10Tao,J.,Kang,Y.,Li,A.Prosody Conversion From Neutral Speech to Emotional Speech. IEEE Transactions on Audio, Speech and Language Processing . 2006

同被引文献19

  • 1郭武,戴礼荣,王仁华.采用UBM更新量作为支持向量机特征的说话人确认[J].清华大学学报(自然科学版),2008,48(S1):704-707. 被引量:4
  • 2谢焱陆.基于特征变换和分类的文本无关电话语音说话人识别研究[D].合肥:中国科学技术大学,2007.
  • 3CAMPBELL J. Speaker reeognition: a tutorial[ C ]// Pro- ceedings of IEEE 1997 Custom Integrated Circuits Confer- ence. Califomia:IEEE,1997, 85(9) : 1A37-1462.
  • 4KERSTA L G. Voiceprint identification [J]. Nature, 1962, 196: 1253-1257.
  • 5LUCK J E: Automatic speaker verification using cepstral measurements[J]. Journal of the Acoustical Society of A- merica, 1979, 46(4) :966-978.
  • 6ATAL B S. Automatic recognition of speakers from their voices [ J ]. Proceedings of IEEE, 1976, 64 (4) : 460-475.
  • 7DAVIS S B, MERMELSTEIN P. Comparison of parametric representations for monosyllabic word recognition in contin- uously spoken sentences [ J ]. IEEE Transactions on Acous- tics,Speech and Signal Processing,1980,28(4) :357-366.
  • 8RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J-. Proceed- ings of IEEE, 1989, 77(2) : 57-286.
  • 9REYNOLDS D A, ROSE R C. Robust text-independent speaker identification using gaussian mixture speaker models[ J]. IEEE Transactions on Audio, Speech and Language Processing, 1995, 17 : 91-108.
  • 10REYNOLDS D A, QUATIERI T, DUNN R. Speaker ver- ification using adapted gaussian mixture models [ J ]. Dig- ital Signal Processing, 2000, 10(10) : 19-41.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部