期刊文献+

考虑通货膨胀和退保情形的总保费精算模型

Gross Premium Actuarial Models Include Inflation and Surrender Situation
下载PDF
导出
摘要 为使寿险公司能根据实际情况及时合理地调整保费价格,在改进的传统总保费精算方法的基础上,给出了在随机利率模型和随机死亡率模型上定价净保费的方法,同时在考虑通货膨胀和退保情形的前提下尽可能地把寿险公司所涉及的费用都作独立的随机变量纳入寿险总保费的计算中,并给出了计算总保费的公式.数值算例表明了该法的可行性. In order to enable the life insurance company to act in accordance with to the actual situation prompt reasonable adjustment insurance premium price,based on the improved traditional gross premium calculation method foundation,the article presents a method of net premium pricing under mortality and interest rates,both of which are stochastic,in gross premium calculation,inflation and surrender factors are considered as independent random variables.This paper gives a formula to calculate the gross premium.
出处 《南通大学学报(自然科学版)》 CAS 2011年第4期72-78,共7页 Journal of Nantong University(Natural Science Edition) 
基金 安徽省自然科学基金项目(090416225)
关键词 保费 退保 通货膨胀 随机利率模型 随机死亡率模型 premium surrender factors inflation stochastic interest rate models stochastic mortality models
  • 相关文献

参考文献11

  • 1Lee R D, Carter L R. Modelling and forecasting US mortality[J]. Journal of American Statistical Association, 1992, 87(419) :659-671.
  • 2Milevsky M A, Promislow S D. Mortality derivatives and the option to annuitise [J]. Insurance: Mathematics and Economics, 2001, 29(3) :299-318.
  • 3Schrager D F. Affine stochastic mortality [J]. Insurance: Mathematics and Economics, 2006, 38(1) : 81-97.
  • 4Lin Y J, Cox S H. Securitisation of mortality risks in life annuities [J]. Journal of Risk and Insurance, 2005, 72 (2) : 227-252.
  • 5Gaillardetz P. Valuation of life insurance products under stochastic interest rates[J]. Insurance : Mathematics and Eco- nomics, 2008, 42 ( 1 ) : 212-226.
  • 6Shreve Steven E. stochastic calculus for finance Ⅱ:continuous-time models[M]. New York: Springer, 2003.
  • 7Date P, Mamon R, Wang I C. A linear algebraic method for pricing temporary life annuities and insurance policies [J]. Insurance. Mathematics and Economics, 2010, 47 ( 1 ) : 98-104.
  • 8Brigo D, Mercurio F. Interest rate models-theory and practice[M]. 2nd ed. Heidelberg:Springer-Verlag, 2006.
  • 9Date P, Mamon R, Wang I C. Valuation of cash flows under random rates of interest: A linear algebraic approach [J]. Insurance: Mathematics and Economics, 2007, 41 (1):84-95.
  • 10Luciano E, Vigna E. Non-mean-reverting affine processes for stochastic mortality[R]. Working paper at Department of Statistics and Applied Mathematics, University of Turin, Italy, 2005.

二级参考文献2

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部