期刊文献+

Carnot群上凸函数的比较原理

Comparison Principles for Convex Functions on the Carnot Group
下载PDF
导出
摘要 Carnot群上凸函数的单调性质对研究完全非线性次椭圆方程的正则性理论起关键作用.通过在Carnot群上引入(Hr)-凸函数类,利用辅助函数方法并结合基于群结构的散度定理,建立了关于(H2)-凸函数的比较原理.此外,作为该结论的应用,得到了高维Heisenberg群上关于凸函数的比较原理.这些结果有望为进一步研究Carnot群上凸函数的性质和完全非线性方程的正则性提供理论基础. The monotonicity properties of convex functions on the Carnot group are important in studying the regularity of fully nonlinear subelliptic equations. Firstly, the (H)r-convex function class was introduced on the Carnot group. Then, the comparison principle of the (H)_ convex functions was established by constructing auxiliary functions and using divergence theorem based on the group structure. Moreover, as an application of the result, the comparison principle of the convex functions on the higher-dimension Heisenberg group was obtained. These results are expected to provide some theoretical basis for the further study of the properties of convex functions and of the regularity of fully nonlinear equations on the Carnot group.
出处 《西安工业大学学报》 CAS 2011年第6期512-517,共6页 Journal of Xi’an Technological University
关键词 CARNOT群 凸函数 比较原理 散度定理 carnot group convex function comparison principle divergence theorem
  • 相关文献

参考文献10

  • 1Danielli D, Garofalo N, Nhieu D. Notions of Convexity in Carnot Groups[J]. Communications in Analysis and Geometry, 2003,11(2) : 263.
  • 2Gutierrez C,Montanari A. Maximum and Comparison Principles for Convex Functions on the Heisenberg Groups[J]. Communications in Partial Differential E- quations, 2004,29(9) : 1305.
  • 3Garofalo N, Tournier F. New Properties of Convex Functions in the Heisenberg Group[J]. Transactions of American Mathematical Society, 2004, 358 ( 5 ) : 2011.
  • 4Caffarelli L, Cabre X. Fully Nonlinear Elliptic Equa- tions[ M]. Providence: Colloquium Publications, 19 9 5.
  • 5Gutierrez C. The Monge-ampere Equation[M]. Bos- ton: Birkhauser Publications, 2001.
  • 6Guti6rrez C, Montanari A. On the Second Order De- rivatives of Convex Functions on the Heisenberg Group[J]. Calculus of Variations and Partial Differ- ential Equations, 2004,19 (1) : 11.
  • 7Trudinger N, Wang X. Hessian Measures I[J]. To- pological Methods in Nonlinear Analysis, 1997, 10 (4):225.
  • 8Trudinger N, Wang X. Hessian MeasuresⅡ[J]. The Annals of Mathematics, 1999,150(2): 579.
  • 9Trudinger N, Wang X. Hessian MeasuresⅢ[J]. Journal of Functional Analysis, 2002,193(1) : 1.
  • 10Varadarajan V. Lie Groups, Lie Algebras and Their Representations[M]. New York: Springer- Verlag Press,1995.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部