期刊文献+

二阶模糊微分方程的Adomian解法 被引量:2

Solution of Second order Fuzzy Differential Equations by Adomian Decomposition Method
原文传递
导出
摘要 在一阶广义Hukuhara导数的基础上定义了模糊值函数的二阶广义Hukuhara导数,利用该导数研究了二阶模糊微分方程的模糊初值问题,将二阶模糊微分方程转化成4个等价的常微分方程组,给出了模糊初值问题近似解析解的A dom ian解法,文中给出了具体算例。 In this paper, we defined the second order generalized Hukuhara derivative for fuzzy-valued functions on the basis of first order generalized Hukuhara derivative and studied the second order fuzzy differential equations with fuzzy initial value problem using this derivative. We translated the second order fuzzy differential equations into four ordinary differential equations with the generalized Hukuhara derivative and gave the solution of fuzzy initial value problems using Adomian decomposition method, we illustrated the result by showing one example.
作者 王磊 郭嗣琮
出处 《模糊系统与数学》 CSCD 北大核心 2011年第6期23-28,共6页 Fuzzy Systems and Mathematics
基金 教育部博士点基金资助项目(20102121110002)
关键词 模糊数 模糊初值 广义Hukuhara导数 ADOMIAN分解法 Fuzzy Number Fuzzy Initial Value Generalized Hukuhara Differentiability AdomianDecomposition Method
  • 相关文献

参考文献17

  • 1Zadeh L. Toward a generalized theory of uncertainty (GTU) an outline[J]. Information Sciences,2005,172:140-152.
  • 2Kandel A, Byatt W J. Fuzzy differential equations[C]//Proceedings of the International Conference on Cybernetics and Society, Tokyo, Japan, 19 7 8 : 1213-1216.
  • 3Buckley J J, Feuring T. Fuzzy differential equations[J]. Fuzzy Sets and Systems, 2000,110 (1) : 43-54.
  • 4Puri M, Raleseu D. Differentials of fuzzy functions[J]. Journal of Mathematical Analysis and Applications,1983,91: 552-558.
  • 5Bencsik A, Bede B, Tar J, Fodor J. Fuzzy differential equations in modeling hydraulic differential servo cylinders [C]//Third Romanian-Hungarian Join Symposium on Applied Computational Intelligence (SACI), Timisoara, Romania, 2006.
  • 6Wu C X, et al. Exitance theorem to the Cauchy problem of fuzzy differential equations under compactance-type conditions[J]. Information Science, 1993,108 : 123-134.
  • 7Kaleva O. Fuzzy differential equations[J]. Fuzzy Sets and Systems, 1987,24 : 301-317.
  • 8Kaleva O. The Cauchy problem for fuzzy differential equations[J]. Fuzzy Sets and Systems,1990,35:389-396.
  • 9Diamond P. Stability and periodicity in fuzzy differential equations[J]. IEEE Transactions on Fuzzy Systems,2000, 8 :583-590.
  • 10Hullermeier E. An approach to modelling and simulation of uncertain dynamical systems[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1997,5 (2) : 117-137.

同被引文献17

  • 1王磊,郭嗣琮.n阶线性方程模糊初值问题的模糊结构元解法[J].辽宁工程技术大学学报(自然科学版),2004,23(3):412-414. 被引量:4
  • 2郭嗣琮,王磊.模糊限定微分方程及定解问题[J].工程数学学报,2005,22(5):869-874. 被引量:10
  • 3Wu C X, Song S J.Existence and uniqueness of solutions to the Cauchy problem of fuzzy differential equations[J]. Fuzzy Sets and Systems,2000,110:55-67.
  • 4Nieto J J, Rodriguez-Lopez R, Franco D.Linear first-order fuzzy differential equations[J].Intemational Journal of Uncer- tainty Fuzziness Knowledge-Based Systems,2006,14:687-709.
  • 5Misukoshi M, Chalco-Cano Y, Roman-Flores H, et al.Fuzzy differential equations and the extension principle[J].Informa- tion Sciences, 2007,177 : 3627-3635.
  • 6Chang S L, Zadeh L A.On fuzzy mapping and control[J].IEEE Transactions on Systems Man Cybernetics, 1972, 2: 330-340.
  • 7Dubois D,Prade H.Towards fuzzy differential calculus:part 3,differentiation[J].Fuzzy Sets and Systems, 1982,8:225-233.
  • 8Bede B,Gal S G.Almost periodic fuzzy-number-valued func- tions[J].Fuzzy Sets and Systems, 2004,147 (3) : 385-403.
  • 9Bede B,Rudas I J,Bencsik A L.First order linear fuzzy dif- ferential equations under generalized differentiability[J].Infor- mation Sciences,2007,177(7) : 1648-1662.
  • 10Zhou J K.Differential transformation and its applications for electrical circuits[M].Wuhan: Huazhong University Press, 1986.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部