期刊文献+

基于多视角二维主动学习的多标签分类 被引量:3

Multi-label classification based on multi-view two-dimensional active learning
下载PDF
导出
摘要 针对多标签图像分类问题的特点,提出了一种多视角二维主动学习(MV-2DAL)算法,以通过多视角学习与主动学习的有机结合,深入挖掘样本、标签、视角三个维度上的相关性和冗余性。此算法以样本.标签对作为基本标注单位,在每个视角内,利用二维主动学习的方法计算样本、标签维度上的不确定度;在不同视角间,通过多视角融合的方法计算跨视角的不确定度;最终,将视角内不确定度与视角间不确定度进行融合得到总不确定度,并以此衡量样本-标签对的标注价值。将MV-2DAL算法应用到图像内容理解的一个重要领域——多标签图像分类中,显著提高了信息标注的针对性,不仅有效降低了信息冗余度,同时也大幅减少了数据标注量。 This paper presents the multi-view two-dimensional active learning (MV-2DAL) algorithm for multi-label image classification so as to thoroughly explore the redundancies along the dimensions of sample, label and view, by the organic integration of the active learning with the multi-view learning. Taking a sample-label pair as the basic labeling unit, the algorithm calculates the uncertainties from the dimensions of sample and label within each view u- sing the two-dimensional active learning, and captures the uncertainties over different views based on the muhi-view fusion. The overall uncertainty along the three dimensions is obtained to detect the most informative sample-label pairs. The experiments on the real-world multi-label image classification demonstrate that the proposed MV-2DAL algorithm is effective for redundancy reduction, and thus greatly alleviates the burden on human labeling.
作者 张晓宇
出处 《高技术通讯》 CAS CSCD 北大核心 2011年第12期1312-1317,共6页 Chinese High Technology Letters
基金 中央级公益性科研院所基本科研业务费专项资金(ZD2011-7-3)和中国科学技术信息研究所科研预研基金(YY-201114)资助项目.
关键词 主动学习(AL) 多视角学习 多标签分类 图像分类 多模态融合 active learning ( AL ), muhi-view learning, multi-label classification, image classification,multi-model fusion
  • 相关文献

参考文献12

  • 1Yan R, Yang J, Hauptmann A. Automatically labeling video data using multi-class active learning. In: Proceed- ings of the IEEE International Conference on Computer Vision, Nice, France, 2003. 516-523.
  • 2Boutell M R, Luo J, Shen X, et al. Learning muhi-label scene classification. Pattern Recognition, Elsevier, 2004, 37(9) : 1757-1771.
  • 3Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the ACM Interna- tional Conference on Multimedia, Ottawa, Canada, 2001. 107-118.
  • 4Li X, Wang L, Sung E. Muhi-label SVM active learning for image classification. In: Proceedings of the IEEE In- ternational Conference on Image Processing, Singapore, 2004. 2207-2210.
  • 5Brinker K. On active learning in muhi-label classifica- tion. From Data and Information Analysis to Knowledge Engineering, Springer, 2006:206-213.
  • 6Qi G J, Hua X S, Rui Y, et al. Two-dimensional active learning for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition, Alaska, USA, 2008. 1-8.
  • 7Muslea I, Minton S, Knoblock C A. Active + semi-su- pervised learning = robust multi-view learning. In: Pro- ceedings of the International Conference on Machine Learning, Sydney, Australia, 2002. 435-442.
  • 8Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In : Proceedings of the Annual Con- ference on Computational Learning Theory, Madison, USA, 1998. 92-100.
  • 9Nigam K, Ghani R. Analyzing the effectiveness and ap- plicability of co-training. In: Proceedings of the Interna-tional Conference on Information and Knowledge Manage- ment, McLean, USA, 2000. 86-93.
  • 10Muslea I, Minton S, Knoblock C A. Selective sampling with redundant views. In: Proceedings of the National Conference on Artificial Intelligence, Austin, USA, 2000. 621-626.

同被引文献17

  • 1Rosenbloom A. The blogosphere:introduction[J].Communications of the ACM,2004,(12):31-33.
  • 2Parker C,Pfeiffer S. Video blogging:content to the max[J].IEEE Multimedia,2005,(02):4-8.doi:10.1109/MMUL.2005.41.
  • 3Qi G,Hua X,Rui Y. Correlative multi-label video annotation[A].Augsburg,Germany,2007.17-26.
  • 4Wang X,Zhang L,Jing F. AnnoSearch:image auto-annotation by search[A].New York,USA,2006.1483-1490.
  • 5Wang C,Jing F,Zhang L. Scalable search-based image annotation of personal images[A].Santa Barbara,USA,2006.269-278.
  • 6Rui X,Li M,Li Z. Bipartite graph reinforcement model for web image annotation[A].Augsburg,Germany,2007.585-594.
  • 7Miller G. WordNet:a lexical database for English[J].Communications of the ACM,1995,(11):39-41.doi:10.1145/219717.219748.
  • 8Natsev A,Haubold A,Tesic J. Semantic conceptbased query expansion and re-ranking for multimedia retrieval[A].Augsburg,Germany,2007.991-1000.
  • 9Schutze H,Pedersen J. A cooccurrence-based thesaurus and two applications to information retrieval[J].Information Processing & Management,1997,(03):307-318.doi:10.1016/S0306-4573(96)00068-4.
  • 10Cilibrasi R,Vitanyi P. Automatic extraction of meaning from the web[A].Seoul,Korea,2006.2309-2313.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部