摘要
针对多标签图像分类问题的特点,提出了一种多视角二维主动学习(MV-2DAL)算法,以通过多视角学习与主动学习的有机结合,深入挖掘样本、标签、视角三个维度上的相关性和冗余性。此算法以样本.标签对作为基本标注单位,在每个视角内,利用二维主动学习的方法计算样本、标签维度上的不确定度;在不同视角间,通过多视角融合的方法计算跨视角的不确定度;最终,将视角内不确定度与视角间不确定度进行融合得到总不确定度,并以此衡量样本-标签对的标注价值。将MV-2DAL算法应用到图像内容理解的一个重要领域——多标签图像分类中,显著提高了信息标注的针对性,不仅有效降低了信息冗余度,同时也大幅减少了数据标注量。
This paper presents the multi-view two-dimensional active learning (MV-2DAL) algorithm for multi-label image classification so as to thoroughly explore the redundancies along the dimensions of sample, label and view, by the organic integration of the active learning with the multi-view learning. Taking a sample-label pair as the basic labeling unit, the algorithm calculates the uncertainties from the dimensions of sample and label within each view u- sing the two-dimensional active learning, and captures the uncertainties over different views based on the muhi-view fusion. The overall uncertainty along the three dimensions is obtained to detect the most informative sample-label pairs. The experiments on the real-world multi-label image classification demonstrate that the proposed MV-2DAL algorithm is effective for redundancy reduction, and thus greatly alleviates the burden on human labeling.
出处
《高技术通讯》
CAS
CSCD
北大核心
2011年第12期1312-1317,共6页
Chinese High Technology Letters
基金
中央级公益性科研院所基本科研业务费专项资金(ZD2011-7-3)和中国科学技术信息研究所科研预研基金(YY-201114)资助项目.
关键词
主动学习(AL)
多视角学习
多标签分类
图像分类
多模态融合
active learning ( AL ), muhi-view learning, multi-label classification, image classification,multi-model fusion