期刊文献+

考虑风电并网的分时段短期电价预测 被引量:3

Short-Term Electricity Price Forecasting Based on Period-Decoupled Price Sequence with Grid-Connected Wind Power
下载PDF
导出
摘要 考虑了并网风电量对电价影响,并将相关系数作为选取电价影响因素的标准,考虑了历史电价、负荷、并网风电量与负荷的比值等影响电价的因素。分别将负荷与历史清算电价,等效负荷与历史清算电价,负荷、并网风电量与负荷的比值及历史清算电价作为神经网络的输入因子对市场清算电价进行分时段预测。算例采用丹麦电力市场的历史数据,分别对其2010年并网风电量所占比例较大和较小的日期进行预测,验证了选择负荷、并网风电量与负荷的比值及历史清算电价作为预测神经网络的输入变量是恰当的,其预测精度能够满足电力市场实际运行的需要。 In this paper, considering the effects of the gridconnected wind power on electricity price, the correlation coefficient with electricity price sequence is determined as the standard to select the influence factors based on the historical power price, system load, ratio between the load and grid- connected wind power in the price forecasting. The paper takes the load and historical clearing price, equivalent load and historical clearing price, load and the ratio between the load and grid-connected wind power and historical clearing price as input factors of the neural network respectively, and then conducts the calculation of the market clearing price. The historical data from Denmark market is used to predict the dates of both a higher wind power percentage and a lower percentage in 2010. The prediction verifies that selection of load, ratio between the load and connected wind power and historical clearing price as inputs of the neural network is appropriate, and the precision of prediction can meet needs for the practical operation of the power market.
出处 《电网与清洁能源》 2011年第12期84-89,94,共7页 Power System and Clean Energy
基金 福建省自然科学基金资助项目(2008J0018)~~
关键词 电价预测 出清电价 并网风电量 神经网络 概率分布 price forecasting clearing prices grid-connected wind power neural network probability distribution
  • 相关文献

参考文献17

  • 1FRANCISCO J. Forecasting Next-day Electricity Prices by Time Series Models[J]. IEEE Transaction on Power Systems, 2002,17(2):342-348.
  • 2胡朝阳,孙维真,汪震,王康元,甘德强,韩祯祥.考虑市场力的短、中、长期电价预测[J].电力系统自动化,2003,27(22):16-22. 被引量:85
  • 3JAVIER Contreras,ROSARIO Espinola,FRANCISCO J,et al. ARIMA Models to Predict Next-day Electricity Prices[J]. IEEE Transaction on Power Systems,2003,18(3): 1014-1020.
  • 4CUARESMA J C,HLOUSKOVA J,KOSSMEIER S, et al. Forecas-ting Electricity Spot-prices Using Linear Univariate Time.
  • 5SZKUTA B R,SANABRIA T S,DILLON LA.Electric Price Short-term Forecasting Using Artificial Neural Network Method[J]. IEEE Trans.on PWS,1999,14(3):851-857.
  • 6GAO Feng, GUAN Xiao-hong, CAO Xi-ren, et al. Forecasting Power Market Clearing Price and Quantity Using a Neural Network Method[A]. [sl]: IEEE,2000:2183-2188.
  • 7HONG Y,HSIAO C Y.Locational Marginal Price Forecasting in Deregulated Electricity Markets Using Artificia Lintel- Ligence[J]. IEEE Proc. Gener. Transim. Distrib. Sep. 2002, 149(5):621-626.
  • 8GUO Jau-Jia,PETER B Luh.Selecting Input Factors for Clusters of Gaussian Radial Basis Function Networks to Improve Market Clearing Price Prediction[J]. IEEE Trans. Power Syst.Aug.2003,18(3): 665-672.
  • 9YAMIN H Y,SHAHIDEHPOUR S M,LI Z.Adaptive Shortterm Electricity Price Forecasting using Artificial Neural Networks in the Restructured Power Markets[J]. Electrical Power and Energy Systems,2004, 26(8).
  • 10张显,王锡凡,陈芳华,叶斌,陈皓勇.分时段短期电价预测[J].中国电机工程学报,2005,25(15):1-6. 被引量:60

二级参考文献73

共引文献192

同被引文献48

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部