期刊文献+

红外空中小目标小波域检测方法

Research on Infrared Small Target Detecting in the Sky in Wavelet Domain
下载PDF
导出
摘要 针对空中远距离红外小目标检测的实际问题,提出了一种基于小波变换的检测算法。该方法首先对小目标图像进行小波分解并在考虑高频系数能量的基础上对噪声和背景边缘系数进行抑制,然后将遗留下来的高频系数通过线性映射变换成灰度图像。其次对3个方向的高频图像按照一维最大熵法进行二值化处理并通过形态开算子进一步滤除噪声,随后将高频图像两两相与关联生成单帧检测结果,并进一步利用帧间目标位置的相关性完成小目标检测过程。最后,在原图像中以检测结果图像的质心为中心生成跟踪窗口。试验结果表明,相对于通常的小目标检测算法,提出的算法在背景抑制、检测准确度以及速度方面都具有一定的优势。 In order to solve the practical problem of the infrared small target's detecting in the sky,a detecting algorithm based on the wavelet transform was proposed.Firstly,the infrared image which included small target was decomposed by the wavelet transform.In order to suppress background and noise,the wavelet coefficients in high frequence were processed by the threshold method which took coefficient energy into account.Then the left coefficients were mapped to gray image by the linear transform.Secondly,the three mapped images in high frequency were binarized by the method of one-dimensional maximum entropy and the morphology open operator was used to filter the noises further.Subsequently,the result image of single frame was acquired by taking the correlation between the three images in high frequency into account.The final detecting result was obtained by considering the position correlation of the target between frames.In the end,the tracking window whose center was the centroid of the result image was generated in the original image.Experimental results show that the method given by this paper,compared with some traditional method,has certain advantages in background suppressing,detecting accuracy and speed.
出处 《火力与指挥控制》 CSCD 北大核心 2011年第12期88-91,共4页 Fire Control & Command Control
关键词 红外小目标 小波变换 系数能量 线性映射 一维最大熵 infrared small target wavelet transform coefficient energy linear mapping one-dimensional maximum entropy
  • 相关文献

参考文献9

二级参考文献48

  • 1李现民,李桂清,李华.基于等值面肝脏纤维组织的三维重建[J].计算机应用,2000,20(S1):6-8. 被引量:2
  • 2方驰华,周五一,黄立伟,王博亮,钟世镇.虚拟中国人女性一号肝脏图像三维重建和虚拟手术的切割[J].中华外科杂志,2005,43(11):748-752. 被引量:57
  • 3张立东,毕笃彦.一种改进的形态学梯度边缘检测算法[J].计算机工程,2005,31(21):14-16. 被引量:6
  • 4彭嘉雄,彭铁.弱目标检测的图像流法[J].红外与激光工程,1996,25(4):34-40. 被引量:28
  • 5Blostein S D,Huang T S.Detection of small moving objects in image sequences using multistage hypothesis testing[A].IEEE International Conference on Acoustics,Speech,and Signal Processing[C].1988.1068—1071.
  • 6Bronskill J F,Hepburn J S A,Au W K.A knowledge-based approach to the detection,tracking and classification of target formations in infrared image sequences[A].Proc of IEEE International Conference on Computer Vision and Pattern Recognition[C].1989.153—158.
  • 7Barniv Y.Dynamic programming solution for detection dim moving targets[J].IEEE Trans AES,1985,21(1)1144—155.
  • 8Peter L Chu.Optimal projection for multidimensional signal detection[J].IEEE Transactions on Acoustics Speech and Signal Processing,1988,36(5): 776—786.
  • 9Lion R,Inigo M R,Azimisadjad E S. Dim target detection using high order correlation method[J]. IEEE Transaction Aerospace Election System, 1994,29(1) :197-212.
  • 10Nishiguchi K, Kobayashi M, Ichikawa A. Small target detection from image sequences using recursive max filter[A]. SPIE[C]. 1995,2561. 153-165.

共引文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部