期刊文献+

随机过程动态自适应小波独立网格多尺度模拟 被引量:4

Capturing Allscales of Random Modes on Independent Grids
原文传递
导出
摘要 在随机过程数值仿真中,由多项式混沌展开谱方法得到求解展开系数的确定性偶合方程组。该方程组比相应的确定性仿真时增大许多。并且当多项式展开阶数和随机空间维数提高时,方程维数急剧增加。由于待求未知分量为表征不同尺度波动的混沌展开模,形成节点意义下的的多尺度问题,传统的网格细分自适应逼近不再适用。为此我们采用了小波的多尺度离散,并建立基于空间细化的动态自适应系统,让每个求解点上的多个未知分量有各自独立的小波网格。本文以随机对流扩散方程为例,进行了二个算例的数值实验,论证了此方法的优点。 In stochastic computations, the spectral approach based on the polynomial chaos expansion in random space leads to a coupled system of deterministic equations for the coefficients of the expansion. The size of this system is much larger than the deterministic counterpart and grows quickly with an increasing number of independent random variables and/or order of polynomial chaos expansion. Moreover, the solution components at each computational grid point represent fluctuations of different scales, their coupled grid-wise, multiscale nature, renders the conventional mesh-refinement unsuitable. Here we approach this challenge using a novel approach based on a dynamically adaptive wavelet methodology involving space-refinement oil physical space that allows all scales of each solution component (random mode) to be refined independently of the rest. We exemplify this by focusing on the convection-diffusion model with random input data. We present two numerical examples illustrating the salient features of the proposed method.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第2期222-227,共6页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项日(No.50976071)
关键词 随机过程数值仿真 动态自适应小波方法 多项式浑沌展开 随机对流扩散方程 numerical stochastic simulation dynamically adaptive wavelet method polynomial chaos expansion stochastic convection-diffusion equation
  • 相关文献

参考文献12

  • 1Ghanem R G, Spanos P D. Stochasitc Finite Elements: a Spectral Approach [M]. Revised Edition. New York: Dover Publications, 2003.
  • 2Xiu D. Fast Numerical Methods for Stochastic Computations [J]. Commun Comput Phys, 2009, 5:242-272.
  • 3Xiu D, Karniadakis G E. 2002 The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations [J]. SIAM J Sci Comput, 2002, 24:619-644.
  • 4Le Ma ztre 0 P, Knio 0 M, Najm H N, et al. A Stochas-tic Projection Method for Fluid Flow, I Basic Formulation [J]. J Compt Phys, 2001, 173:481-511.
  • 5Wiener N. The Homogeneous Chaos [J]. Amer J Math, 1938, 60:897-936.
  • 6REN Xiaoan, WU Wenquan. Numerical Simulation for Stochastic Convection-Diffusion Processes in Concentration Fields [C]// New Trends in Fluid Mechanics Research, Proceedings of the Fifth International Conference on Fluid Mechanics, ICFM-V, Shanghai, China. Beijing: TSINGHUA University Press, Springer. 2007:578-581.
  • 7吴文权,任孝安.随机对流扩散方程的数值仿真[c]//中国工程热物理学会热机气动热力学分会2010年论文.2010.
  • 8Daubechies I. Orthonormal Bases of Compact Supported Wavelets [J]. Comm Pure and Appl Math, 1988, 41: 909996.
  • 9Donoho D. Interpolating Wavelet Transforms [R]. Dept of Statistics, Stanford University, preprint, 1992.
  • 10Bertoluzza S. An Adaptive Collocation Method Based on Interpolating Wavelets [C]//Multiscale Wavelet Methods for Partial Differential Equations (ed W Dahmen, A J Kurdila & P Oswald), Academic Press, 1997.

同被引文献13

  • 1李万成.基于时序分析和K-L信息距离的柴油机气阀机构故障诊断[J].现代电子技术,2007,30(15):173-175. 被引量:1
  • 2N Hritonenko, Y Yatsenko. Methematical Modeling inEconomics, Ecology and the Environment [M]. Kluwer Academic Publishers, 1999.
  • 3O P Le Maitre, O M Knio, H N Najm, et al. A Stochastic Projection Method for Fluid Flow, I. Basic Formulation [J]. J Comput Phys, 2001: 173, 481-511.
  • 4D Xiu, G E Karniadakis. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations [J], SIAM J Sci Comput, 2002, 24:619444.
  • 5REN Xiaoan, WU Wenquan, Leonidas S Xanthis. A Dynamically Adaptive Wavelet Approach to Stochastic Com- putations Based on Polynomial Chaos - Capturing All Scales of Random Modes on Independent Grids [J]. J of Comput Phys, 2011(230): 7332 7346.
  • 6CHOOPRAYOON V, FUNG Chun-che, DEP1CKERE A A. TECTAM, a modified technology acceptance model to assess e-commerce technologies adoption by Thai SME [C]// TENCON 2007. Taipei.. IEEE, 2007: 1-4.
  • 7MASHHADI M M, TOFIGHI M, SALAMAT V. Investi- gating customers ' decision to accept e banking services [C]//2007 IEEE International Conference on Industrial En- gineering and Engineering Management. Singapore: 2007: 204-208.
  • 8REN Xiaoan, WU Wenquan. Numerical Solution for Stochastic Convection-Diffusion Processes [C]// New Trends in Fluid Mechanics Research, Proceedings of Fifth International Conference on Fluid Mechanics, ICFM-V, Shanghai China. Beijing: Tsnghua Univ. Press, Springer. 2007:578-581.
  • 9REN Xiaoan, WU Wenquan, Xanthis L S. A Dynamiclly Adaptive Wavelet Approach to Stochastic Computations based on Polynomial Chaos - Capturing All Scales of Ran- dom Modes on independent grids [J]. Journal of Compu- tational Physics, 2011, 230(19): 7332-7346.
  • 10Ghanem R G, Spanos P D. Stochastic Finite Elements: A Spectral Approach [M]. revised ed. New York: Dover Publications. 2003.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部