期刊文献+

太阳能制氢腔式吸热器混合对流的数值模拟研究 被引量:3

Numerical Simulation of Mixed Convection in Solar Cavity Receiver for Hydrogen Production
原文传递
导出
摘要 混合对流热损失是影响太阳能与生物质超临界水气化耦合制氢腔式吸热器热效率的关键因素之一。本文以动力工程多相流实验室建成的生物质超临界水与太阳能聚集供热耦合制氢腔式吸热器为研究对象,对腔式吸热器混合对流换热进行了数值模拟研究。通过使用RNGkε湍流模型,研究了制氢吸热器在外界风吹掠环境下的混合对流热损失,获得了腔式吸热器在不同风速、风向吹掠下的混合对流换热准则Nusselt数。模拟结果表明,侧向风与侧迎向风对腔内对流热损失影响最大,当风速超过某一数值(Richardson数>1),外界风诱发的强制对流会在对流热损失中占主导作用,且随着风速增加,混合对流热损失随Re提高而增大。 Mixed convection heat loss is the key factor to determine the thermal efficiency of solar cavity receiver for hydrogen production by biomass gasification using concentrated solar energy. In this paper, the solar cavity receiver, built by State Key Laboratory of Multiphase Flow in Power Engineering, was numerically modeled to study the characteristics of mixed convection heat loss. The RNG k - ε turbulence model was adopted to investigate the flow pattern and mixed convection heat transfer characteristics around the solar cavity with external wind effect. The correlation for Nusselt number was obtained with various wind directions and wind velocity. The result showed that, the side towards wind and semi-side towards wind have the most significant effects on convection heat loss. When the wind velocity was big enough to make Richardson greater than 1, the forced convection drive by external wind is dominated, and mixed convection heat loss increases with augmentation of Re and the increase of wind velocity.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第2期273-276,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金创新群体项目(No.50821604) 优秀国家重点实验室专项基金资助项目(No.50823002)
关键词 太阳能 混合对流 热损失 制氢腔式吸热器 solar energy mixed convection heat loss cavity receiver for hydrogen production
  • 相关文献

参考文献8

  • 1Leibfried U, Ortjohann J. Convective Heat Loss From Upward and Dowzlward-Facing Cavity Solar Receivers: Measurements and Calculations [J]. ASME, Journal of Solar Energy Engineering, 1995, 117(2): 75-85.
  • 2李杰,陈建兵,张琳琳,韦笠.中国大陆地区年最大平均风速的概率密度函数[J].自然灾害学报,2006,15(5):76-82. 被引量:12
  • 3CHEN Jingwei, LU Youjun, GUO Liejin, et al. Hydrogen Production By Biomass Gasification In Supercritical Water Using Concentrated Solar Energy System Development and Proof of Concept [J]. International Journal of Hydrogen Energy, 2010.
  • 4Sendhil K N, Reddy K S. Numerical Investigation of Natural Convection Heat Loss in Modified Cavity Receiver for Fuzzy Focal Solar Dish Concentrator [J]. Solar Energy, 2007, 81(7): 846-855.
  • 5Kima J J, Baik J J. Numerical Study of the Effects of Ambient Wind Direction on Flow and Dispersion in Urban Street Canyons Using the RNG k 7hrbulence Model [J]. Atmospheric Environment, 2004, 38(19): 3O39 -3048.
  • 6ZHANG Ming-liang,SHEN Yong-ming.THREE-DIMENSIONAL SIMULATION OF MEANDERING RIVER BASED ON 3-D RNG k-ε TURBULENCE MODEL[J].Journal of Hydrodynamics,2008,20(4):448-455. 被引量:31
  • 7Khanafer K, Vafai K. Lightstone M. Mixed Convection Heat Transfer in Two-Dimensional Open-Ended Enclosures [J]. International Journal of Heat and Mass Transfer, 2002, 45(26): 5171-5190.
  • 8Stiriba Y, Grau F X, Ferr J A, et al. A Numerical Study of Three-Dimensional Laminar Mixed Convection Past an Open Cavity [J]. International Journal of Heat and Mass Transfer, 2010, 53(21): 4797-4808.

二级参考文献17

共引文献41

同被引文献31

  • 1张春平,刘志刚,赵耀华,唐大伟.碟式聚光太阳能热发电系统用腔式吸热器热性能分析[J].上海理工大学学报,2004,26(4):294-297. 被引量:13
  • 2刘志刚,张春平,赵耀华,唐大伟.一种新型腔式吸热器的设计与实验研究[J].太阳能学报,2005,26(3):332-337. 被引量:25
  • 3JB4732-2005钢制压力容器-分析设计标准[S].
  • 4施明恒 甘永平 马重芳.沸腾与凝结[M].北京:高等教育出版社,1995..
  • 5GB150-2011,压力容器[S].北京,中国国家标准化管理委员会,2011.
  • 6Matthew Neber,Hohyun Lee.Design of a high temperature cavity receiver for residential scale concentrated solar power[J].Energy.2012(1)
  • 7Moises Montiel Gonzalez,Jesús Hinojosa Palafox,Claudio A. Estrada.Numerical study of heat transfer by natural convection and surface thermal radiation in an open cavity receiver[J].Solar Energy.2012(4)
  • 8D. Graf,N. Monnerie,M. Roeb,M. Schmitz,C. Sattler.Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis[J].International Journal of Hydrogen Energy.2008(17)
  • 9Aldo Steinfeld.Solar thermochemical production of hydrogen––a review[J].Solar Energy.2004(5)
  • 10Weiner A W. Solar thermal chemical processing chal- lenges and commercial path forward[J]. Current Opin- ion in Chemical Engineering, 2012,1 (3) : 211-217.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部