摘要
本文采用一簇新的核函数设计原始-对偶内点算法用于解决P*(κ)线性互补问题.通过利用一些优良、简洁的分析工具,证明该算法具有O(q(2κ+1)n1/p(logn)1+1/qlog(n/ε))迭代复杂性.
In this paper,motivated by the complexity results for LO based on kernel functions,we extend a generic primal-dual interior-point algorithm based on a new class of kernel functions to solve P*(κ) LCPs.By using some elegant and simple tools,under the interior-point condition,we show that the large update primal-dual interior-point methods for solving P*(κ) LCPs enjoys O(q(2κ+1)n1/p(log n)1+1/qlog nε-1) iteration bound.
出处
《应用数学》
CSCD
北大核心
2012年第1期61-70,共10页
Mathematica Applicata
基金
Supported by the Natural Science Foundation of Hubei Province(2008CDZ047)
关键词
核函数
线性互补问题
内点算法
大步校正算法
多项式复杂性
Kernel function
Linear complementarity problem
Interior-point algorithm
Large-update method
Polynomial complexity