期刊文献+

Gel'fand三元组上由同一Lévy过程定义的不同分数Lévy过程之间的积分变换公式(英文)

Transformation Formula of Different Fractional Lévy Processes Defined by the Same Lévy Process on Gel'fand Triple
下载PDF
导出
摘要 本文利用Riemann-Liouville分数积分算子的半群性质以及分数Lévy过程的Wie-ner积分,给出由同一平方可积Lévy过程定义的不同分数Lévy过程之间的积分变换公式. In this paper,by virtue of the semigroup property of the Riemann-Liouville fractional integral operator and stochastic integration with respect to the fractional Lévy process on Gel'fand triple,we give the transformation formula of different fractional Lévy processes defined by the same Lévy process on Gel'fand triple.
作者 吕学斌
出处 《应用数学》 CSCD 北大核心 2012年第1期71-75,共5页 Mathematica Applicata
基金 Supported by the NSF(11001051,10971076)
关键词 Gel'fand三元组 分数Lévy过程 积分变换 Gel'fand triple Fractional Lévy processes Transformation formula
  • 相关文献

参考文献13

  • 1Bender C,Elliott R J. On the Clark-Ocone theorem for fractional Brownian motions with Hurst parameter bigger than half[J].Stoch. and Rep. , 2003,75 : 391-405.
  • 2Duncan T E,Jakubowski J,Pasik-Duncan B. Stochastic equations in Hilhert space with a multiplicative fractional Gaussian noise[J]. Stoch. Proc. Appl. , 2005,115 : 1357-1383.
  • 3HUANG Zhiyuan, LI Peiyan. Generalized fractional L6vy processes: a white noise approach[J]. Stoch.Dyn. ,2006,6:473-485.
  • 4HUANG Zhiyuan,Lu Xuebin,WAN Jianping. Fractional L6vy processes and noises on Gelfand triple[[J]. Stoch. Dyn. , 2010,10 : 37-51.
  • 5Jost C. Transformation formulas for fractional Brownian motion[J].Stoc. Proc. Appl. , 2006,116: 1341- 1357.
  • 6Lu Xuebin, HUANG Zhiyuan,WAN Jianping. Fractional L6vy processes on Gelfand triple and stochastic integration[J]. Front. Math. China, 2008,3 : 287-303.
  • 7Mandelbrot B, Van Vess J. Fractional Brownian motion, fractional noises and application[J]. SIAM Rev. , 1968,10:427-437.
  • 8Marquardt T. Fractional Levy processes with an application to long memory moving average processes [J]. Bernoulli, 2006,12 : 1099-1126.
  • 9Marquardt T. Fractional LQvy processes with an application to long memory moving average processes [J]. Bernoulli, 2006,12 : 1099-1126.
  • 10Maslowski B, Nualart D. Evolution equations diven by a fractional Brownian motion[J]. J. Funet. Anal. , 2003,202 : 277-305.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部