期刊文献+

一类具有阶段结构和时滞的捕食模型的稳定性及Hopf分支(英文) 被引量:3

Stability and Hopf Bifurcation in a Predator-prey Model with Stage Structure and Time Delay
下载PDF
导出
摘要 研究一类具有阶段结构和时滞的捕食模型.通过特征方程分别分析了正平衡点和边界平衡点的局部稳定性,到了系统Hopf分支存在的充分条件.通过规范型理论和中心流型定理,给出了确定Hopf分支方向和分支周期解的稳定性的计算公式. A predator-prey system with time delay due to the gestation of the predator and stage structure for both the predator and the prey is proposed and investigated.By analyzing the corresponding characteristic equations,the stability of a positive equilibrium and two boundary equilibria of the system is discussed,respectively.Further,the existence of Hopf bifurcations at the positive equilibrium is also studied.By using the normal form theory and center manifold theorem,formulae determining the direction of bifurcations and the stability of bifurcating periodic solutions are given.
作者 王玲书
出处 《应用数学》 CSCD 北大核心 2012年第1期131-139,共9页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11101117,11071254)
关键词 捕食模型 阶段结构 时滞 稳定性 HOPF分支 Predator-prey model Stage structure Time delay Stability Hopf bifurcation
  • 相关文献

参考文献15

  • 1Aiello W G,Freedman H I. A time delay model of single species growth with stage-structure[J]. Math. Biosci. , 1990,101: 139-156.
  • 2CHEN Yuanyuan,YU Jiang,SUN Chengjun. Stability and Hopf bifurcation analysis in a three-level food chain system with delay[J]. Chaos, Solitons & Fraetals, 2007,31 : 683-694.
  • 3Cooke K,Grossman Z. Discrete delay, distributed delay and stability switches [J].J. Math. Anal. Appl. , 1982,86:592-627.
  • 4El-Sheikh M M A,Mahrouf S A A. Stability and bifurcation of a simple food chain in a chemostat with removal rates[J]. Chaos,Solitons & Fractals,2005,23 : 1475-1489.
  • 5Hale J. Theory of Functional Differential Equation[M]. Heidelberg: Springer, 1977.
  • 6Hassard B,Kazarinoff N,Wan Y H. Theory and Applications of Hopf Bifurcation[G]//London Math. Soc. Lect. Notes, Series, 41. Cambridge : Cambridge Univ. Press, 1981.
  • 7JING Zhujun, YANG Jianping. Bifurcation and chaos in discrete-time predator-prey system[J]. Chaos, Solitons & Fractals,2006,27 : 259-277.
  • 8Krise S,Choudhury S Roy. Bifurcations and chaos in a predator-prey model with delay and a laser-diode system with self-sustained pulsations[J]. Chaos, Solitons & Fractals, 2003,16 : 59-77.
  • 9KUANG Yang. Delay Differential Equation with Application in Population Synamies[M]. New York:Academic Press,1993.
  • 10KUANG Yang,So J W H. Analysis of a delayed two-stage population with space-limited recruitment [J]. SIAM J. Appl. Math. ,1995,55:1675-1695.

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部