期刊文献+

随机规划经验逼近问题最优解集的几乎处处下半收敛性

The Lower Semiconvergence of Optimal Solutions Sets of Empirical Approximation Problems for Stochastic Programming
下载PDF
导出
摘要 本文给出了随机规划经验逼近最优解集几乎处处下半收敛的一个充分条件,并由此得到随机规划经验逼近最优解集几乎处处Hausdorff收敛的一个充分条件. In this paper,a sufficient condition of the almost everywhere lower semiconvergence of empirical approximate optimal solution sets for stochastic programs is studied,and making use of this result gives out a sufficient condition for almost everywhere Hausdorff convergence of empirical approximate optimal solution sets for stochastic programs.
作者 霍永亮
出处 《应用数学》 CSCD 北大核心 2012年第1期220-223,共4页 Mathematica Applicata
基金 重庆市教委基金资助项目(KJ091211)
关键词 随机规划 最优解集 几乎处处下半收敛性 几乎处处Hausdorff收敛 Stochastic program Optimal solution set Almost everywhere lower semiconvergence Almost everywhere Hausdorff convergence
  • 相关文献

参考文献7

  • 1Salinetti G. Consistency of statistical estimators: the epigraphical view[G]//Uryasev S, Pardalos P M. Stochastic Optimization: Algorithms and Applications. Dordrecht: Kluwer Academic Publishers, 2001: 365-383.
  • 2Dupacova J, Wets R J B. Asymptotic behavior of statistical estimators and of optimal solutions of optimization problems[J]. The Annals of Statistics, 1988,16(4) : 1517-1549.
  • 3Artstein Z, Wets R J B. Consistency of minimizers and the SLLN for stochastic programs[J]. Journal Convex Analysis, 1995,2(1) : 1-17.
  • 4Hess C. Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator[J]. The Annals of Statistics, 1996,24 (4) : 1298-1315.
  • 5霍永亮,刘三阳.随机规划经验逼近最优解集序列的几乎处处上半收敛性[J].工程数学学报,2007,24(4):701-706. 被引量:4
  • 6霍永亮,刘三阳.随机规划逼近问题最优解集的稳定性[J].数学学报(中文版),2009,52(5):911-918. 被引量:2
  • 7Pennanen T, Koivu M. Epi-convergent discretizations of stochastic programs via integration quadratures [J]. Numerische Mathematik, 2005,100(1) : 141-163.

二级参考文献23

  • 1霍永亮,刘三阳.随机规划逼近最优解集的上半收敛性[J].西安电子科技大学学报,2005,32(6):953-957. 被引量:17
  • 2Rachev S. T., Romisch,W., Quantitative stability in stochastic programming: the method of probability metrics, Mathematics of Operations Research, 2002, 27(4): 792-818.
  • 3Henrion R., Romisch W., HSlder and Lipschitz stability of solution sets in programs with probabilistic constraints, Mathematical Programming, 2004, 100(3): 589-611.
  • 4Romisch W., Wets R. J. B., Stability of e-approximate solutions to convex stochastic programs, SIAM Journal on Optimization, 2007, 18: 961-979.
  • 5Heitsch H., Romisch W., Strugarek C., Stability of multistage stochastic programs, SIAM Journal on Optimization, 2006, 17: 511-525.
  • 6Eichhorn A., RSmisch W., Stochastic integer programming: limit theorems and confidence intervals, Mathematics of Operations Research, 2007, 32: 118-135.
  • 7Heitsch H., Romisch W., A note on scenario reduction for two-stage stochastic programs, Operations Research Letters, 2007, 18: 961-979.
  • 8Salinetti G., Wets R. J. B., On the convergence in distribution of measurable multifunctions, normal integrands, stochastic processes and stochastic infima, Mathematics of Operations Research, 1986, 11(3): 385- 419.
  • 9Vogel S., A Stochastic approach to stability in stochastic programmin g, Journal of Computational Applied Mathematics, 1994, 56(1): 65-96.
  • 10Li L., Wu C. X., Set-valued Analysis, Beijing: Science Press, 2003.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部