期刊文献+

基于Demons算法的变形掌纹归一化方法研究 被引量:4

Research on the image normalization method of deformed palmprint based on Demons algorithm
下载PDF
导出
摘要 非接触采集是主流掌纹采集方式,但其低约束性可能会导致手掌摆放方式不定,与传感器距离不定,从而引起手掌变形,尤其是手掌平面和传感器平面不平行导致的局部变形问题,这将影响后续特征提取,降低识别率。针对此问题,考虑到人手本身是非刚体的特点,提出基于Demons非刚性配准算法的变形掌纹归一化校正模型,进一步增强变形图像与标准图像的相似性,弥补了传统刚性方法校正效果不佳的缺陷。首先使用改进的Demons非刚性配准算法进行变形掌纹的归一化校正,再使用测度指标进行效果评价,结果表明:在任取的图像序列内,与传统的基于归一化互信息(NMI)的刚性配准方法相比,NMI最高提升3.64%,相关系数(COEF)最高提升156.25%,均方误差(MSE)最高降低81.63%,各指标均优于基于NMI的刚性配准方法,验证了本文方法的有效性和优越性,为后续的特征提取和识别创造了有利条件。 Noncontact collection is the main palmprint acquisition mode, but its low restriction may cause different palm placing gestures and different distances between the palm and the sensor. These may result in palm deformation, especially the partial deformation caused by the non parallelity between palm plane and sensor plane; and this may influence subsequent feature extraction and reduce the recognition rate. Considering the non-rigid characteristic of human hands, a normalization model based on Demons non-rigid registration algorithm is proposed to better enhance the similarity between the deformed image and the standard image, and compensate the shortcomings of traditional rigid method that is not very effective. First, the improved Demons algorithm is used to normalize the deformed patmprint; next, the measurement indexes are employed to evaluate the results. Experimental results demonstrate that in randomly selected image sequence, compared with traditional rigid method based on normalized mutual infor- mation (NMI), the proposed method can increase the NMI by 3.64% , the correlation coefficient (COEF) by 156.25% ,and reduce the mean square error (MSE) by 81.63% at most, which are better than those of the rigid registration method, so the proposed method is effective and superior, and supports favorable conditions for the subsequent feature extraction and recognition.
作者 林森 苑玮琦
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第1期62-68,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60972123) 高等学校博士学科点专项科研基金(20092102110002) 沈阳市科技计划(F10-213-1-00)资助项目
关键词 图像处理 DEMONS算法 掌纹 非刚性 图像配准 归一化 image processing Demons algorithm palmprint non-rigid image registration normalization
  • 相关文献

参考文献21

  • 1JAIN A, ROSS A, PRABHAKAR S. An introduction to biometric recognition [ J ]. IEEE Transaction on Circuit and System for Video Technology, 2004, 14( 1 ) :4-20.
  • 2ZHANG D. Palmprint authentication [ M ]. Boston, USA : Kluwer Academic Publishers, 2004.
  • 3SHU W, ZHANG D P. Automated personal identification by palmprint [ J ]. Optical Engineering, 1998, 37 ( 8 ) : 2359-2362.
  • 4桑海峰,苑玮琦,张志佳,黄静.基于二维主成分分析的掌纹识别研究[J].仪器仪表学报,2008,29(9):1929-1933. 被引量:24
  • 5竺乐庆,张三元,幸锐.基于ARM与WinCE的掌纹鉴别系统[J].仪器仪表学报,2009,30(12):2624-2628. 被引量:20
  • 6ZHANG D, KANHANGAD V, LUO N, et al. Robust palmprint verification using 2D and 3 D features [ J ]. Pat- tern Recognition, 2010, 43( 1 ) :358-368.
  • 7POINSOT A, YANG F, BROST V. Palmprint and face score level fusion: hardware implementation of a contact- less small sample biometric system [ J ]. Optical Engi- neering, 20 11,50 (2) :027002-1-027002-12.
  • 8ZHANG D, GUO ZH H, LU G M, et al. An online sys- tem of multispectral palmprint verification [ J ]. IEEE Transactions on Instrumentation and Measurement, 2010, 59 (2) :480-490.
  • 9LI W, ZHANG D, ZHANG L, et al. 3-D Palmprint rec-ognition with joint line and orientation features[ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C : Applications and Reviews, 2011, 41 (2) :274-279.
  • 10ZHANG D, GUO ZH H, LUG M, et al. Online joint palmprint and palmvein verification [ J ]. Expert Systems with Applications, 2011, 38 ( 3 ) : 2621-2631.

二级参考文献79

共引文献98

同被引文献71

  • 1黄洪琼,温军燕.基于小波变换的图像融合[J].上海海事大学学报,2006,27(1):58-61. 被引量:4
  • 2杨震群,魏骁勇,徐丹,袁国武.掌纹样本采集技术及预处理技术的分析与研究[J].计算机应用,2007,27(2):380-383. 被引量:6
  • 3孙即祥.现代模式识别[M].长沙:国防科技大学出版社,2001.
  • 4SANCHEZ R, SANCHEZ A, GONZALEZ M. Biometrie identification through hand geometry measurements [ J ]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2002,22 ( 18 ) : 1168-1171.
  • 5ERDEM Y, ENDER K, BULENT S, et al. Shape-based hand recognition [ J ]. IEEE Transaction on Image Pro- cessing, 2006,15 ( 7 ) : 1803-1815.
  • 6E1-SALLAM A,SOHEL F, BENNAMOUN M. Robust pose invariant shape-based hand recognition [ C ]. 6th IEEE Conference on Industrial Electronics and Applications ( ICIEA), Crawley, Australia, 2011 : 281-286.
  • 7NICOLAE D. A survey of biometric technology based on hand shape [ J ]. Pattern Recognition, 2009,42 ( 11 ) : 2797 -2806.
  • 8A JAY K, DAVID ZH. Personal recognition using hand shape and texture [ J ]. IEEE Transactions on Image Pro- cessing ,2006,15 ( 8 ) :2454-2461.
  • 9WONG C M. Personal identification/authentication by using hand geometry [ M ]. The Hong Kong University of Science and Technology,2003.
  • 10MOHD S S, RAYNER A. A genetic based wrapper feature selection approach using nearest neighbour distance ma- trix[C]. 2011 3rd Conference on Data Mining and Opti- mization ( DMO), Selangor, Malaysia, 2011 : 237-242.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部