期刊文献+

整数构成对分数加工的影响 被引量:4

The influence of constituent integers on the processing of fractions
下载PDF
导出
摘要 本研究通过两个实验考察了整数构成对分数加工的影响。实验一重复了Bonato等(2007)的研究,要求25名被试比较1/5与1/1、1/2、1/3、1/4、1/6、1/7、1/8、1/9等分数的大小,结果发现被试采用了成分加工策略,即通过比较分母判断分数的大小。实验二改变了分数的整数构成,让24名被试比较1/5与1/1、2/4、3/9、4/16、4/24、3/21、2/16、1/9等分数的大小。这些分数与实验一中的分数实数值相等但整数构成不同。结果表明被试既采取了成分策略,又采取了整体策略,即比较分数的实数值,不过成分策略比整体策略的作用更大。这些结果表明,分数加工具有成分和整体两种策略,具体使用哪种策略与分数的整数构成密切相关。 This study was aimed to explore whether the constituent integers had important influence on the processing of fractions by two experiments. In the experiment 1 which repeated the study by Bonato et al. (2007), 25 subjects was asked to compare 1/1, 1/2, 1/3, 1/4, 1/6, 1/7, 1/8, 1/9 to the reference 1/5. The resuhs showed that participants employed the componential strategy that was based on the comparisons of fractions' denominators. In the experiment 2, the reference 1/5 was asked to be compared with 1/1, 2/4, 3/9, 4/16, 4/ 24, 3/21, 2/16, 1/9 with different integer constituents from those in the experiment 1 but with the same real values. This experiment was administered 24 subjects and the results indicated the use of both the componential strategy and holistic strategy which was based on the comparisons of fractions' real values, but the componential strategy was primarily used as compared to the holistic strategy. Taken together, the results reflected that the representation of fractions was dependent on their constituent integers.
出处 《心理发展与教育》 CSSCI 北大核心 2012年第1期31-38,共8页 Psychological Development and Education
基金 国家自然科学基金(30970909) 西南大学211三期工程国家重点学科建设项目(NSKD08017)
关键词 分数心理表征 成分策略 整体策略 整数构成 Mental representation of fractions Componential strategy Holistic strategy Constituent integers
  • 相关文献

参考文献20

  • 1Baayen, R. H. ,Davidson, D. J. , & Bates, D. M. (2008). Mixed- effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 387 -556.
  • 2Bonato, M., Fabbri, S., Umilta, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33 (6), 1410 - 1419.
  • 3Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44 ( 1 ), 43 - 74.
  • 4Gao, F. , Levine, S. C. , & Huttenlocher, J. (2000). What do infants know about continuous quantity?. Journal of Experimental Child Psychology, 77 ( 1 ), 20 - 29.
  • 5Gevers, W. , Ratinckx, E. , De Baene, W. , & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture : Evidence from the lateralized readiness potential. Experimental Psychology 53, 58 - 68.
  • 6Gilbert, S. J., & Burgess, P. W. (2008). Executive function. Current Biology, 19, R110 - R114.
  • 7Hartnett, P., & Gelman, R. (1998). Early understandings of numbers: Paths or barriers to the construction of new understanding? Learning and Instruction, 8 (4), 341 -374.
  • 8Ischebeck, A. , Schoeke, M. , & Delazer, M. (2009). The processing and representation of fractions within the brain : An fMRI investigation. NeuroImage, 47,403 -413.
  • 9Kallai, A. Y. , & Tzelgov, J. ( 2009 ). A generalized fraction : An entity smaller than one on the mental number line. Journal of Experimental Psychology: Human Perception and Performance, 35 (6), 1845 -1864.
  • 10Lorch, R. F. , & Myers, J. L. (I990). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 149- 157.

同被引文献48

  • 1付馨晨,李晓东.中小学数学比较任务中的直觉法则研究与展望[J].教育学术月刊,2015(2):106-111. 被引量:2
  • 2Bonato,M,Fabbri,S,Umiltà,C,Zorzi,M. The mental representation of numerical fractions:Real or integer[J].Journal of Experimental Psychology: Human Perception and Performance,2007.1410-1419.
  • 3Bright,G.W,Behr,M.J,Post,T.R,Wachsmuth,I. Identifying fractions on number lines[J].JOURNAL FOR RESEARCH IN MATHEMATICS EDUCATION,1988,(03):215-232.
  • 4Booth,J.L,Siegler,R.S. Developmental and individual differences in pure numerical estimation[J].Developmental Psychology,2006,(01):189-201.
  • 5Booth,J.L,Siegler,R.S. Numerical magnitude representations influence arithmetic learning[J].CHILD DEVELOPMENT,2008,(04):1016-1031.
  • 6Carpenter,T.P,Corbitt,M.K,Kepner,H,Jr,Lindquist,M.M,& Reys,R. Results from the second mathematics assessment of the National Assessment of Educational Progress[M].Washington,DC:National Council of Teachers of Mathematics,1981.
  • 7Fazio,L.K,Bailey,D.H,Thompson,C.A,Siegler,R.S. Relations of symbolic and non-symbolic fraction and whole number magnitude representations to each other and to mathematics achievement[A].Seattle,Washington,2013.
  • 8Hecht,S,Vagi,K,Torgensen,J. Fraction skills and proportional reasoning[A].Paul H.Brookes Publishing,Baltimore,2007.121-132.
  • 9Gallistel,C.R,Gelman,R. Preverbal and verbal counting and computation[J].COGNITION,1992,(01):43-74.
  • 10Geary,D.C,Frensch,P.A,Wiley,J.G. Simple and complex mental subtraction:Strategy choice and speed-of-processing differences in younger and older adults[J].Psychology and Aging,1993.242-256.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部