期刊文献+

基于FOE和改进MCMC的视频运动目标跟踪方法 被引量:1

APPROACH OF TRACKING MOVING TARGETS IN VIDEOS BASED ON FOE AND MODIFIED MCMC
下载PDF
导出
摘要 改进的马尔可夫链蒙特卡洛MCMC(Markov Chain Monte Carlo)粒子滤波跟踪算法可以实现稳定跟踪多目标的目的。但在运动场景下,常常出现跟丢或者误跟的情况。考虑到相机聚焦中心FOE(Focus Of Expansion)在估计摄像头运动方面有不可替代的作用,首先通过构建FOE与目标在视频中位置的一个简单估计模型,估计目标的位置,再通过FOE与MCMC的结合,改善了目标丢失和抖动的现象,达到更加准确估计目标的目的。实验表明该方法对摄像头前后平移运动有比较理想的效果。 Modified MCMC(Markov Chain Monte Carlo) particle filters tracking algorithm can track multi-targets steadily.But it may either miss targets or track wrong targets in dynamic scenes.Taking into account that FOE(Focus of Expansion) plays an irreplaceable role in estimating camera movement,a simple estimation model of the target positions in video with FOE is constructed first and through it the target positions are estimated.And by combining MCMC and FOE,the phenomenon of target missing and jitter are improved so that the goal of further precision in target estimation is achieved.It is shown by the experimental results that the proposed approach has good effects on dealing with target tracking problem under front or back camera translation movement.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第1期38-41,95,共5页 Computer Applications and Software
基金 国家自然科学基金项目(60872119) 山东省自然科学基金(2009ZRB01675)
关键词 目标跟踪 摄像机运动 马尔可夫链蒙特卡洛 粒子滤波 相机聚焦中心 Target tracking Camera motion MCMC Particle filter FOE
  • 相关文献

参考文献17

  • 1Welch G,Bishop G.An introduction to the Kalman Filter[R].Technical Report.University of North Carolina at Chapel Hill,August,1997.
  • 2Haykin S.Kalman filtering and neural networks[M].John Wiley and Sons Press,2001.
  • 3Li p H,Zhang T W.Unscented kalman filter for visual curve tracking[J].Image and Vision Computing,2004,22(2):157-164.
  • 4Chang C,Ansari R.Kernel particle filter for visual tracking[J].IEEE Signal Processing Letters,2005:242-245.
  • 5Ristc B,Amlampalam S,Gordon N.Beyond the kalman filter;particle filters for tracking applications[M].Artech House Press,2004.
  • 6Arulampalam M,Maskell S,Gordon N,et al.A tutorial on particle illters for online Nonlinear/non--Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002:174-188.
  • 7Zhao T,Nevatia R.Tracking multiple humans in crowded environment[C]//CVPR,IEEE Press,washington,2004:406-413.
  • 8Khan Z,Balch T,Dellaert F.Mcmo-based particle filtering for tracking a variable number of interacting targets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005:1805-1819.
  • 9Yu Q,Cohen l,Medioni G.Boosted Markov Chain Monte Carlo data tssociation for multiple target detection and tracking[C]//ICPR,Washington,DC,USA,2006:675-678.
  • 10Smith K,Gatica-perez D,Odobez J M.Using particles to track varying numbers of interacting people[C]//Computer Vision and Pattern Recognition,San Diego,USA,2005:962-969.

二级参考文献15

  • 1Xiong Wei,Computer Vision Image Understanding,1998年,71卷,2期,166页
  • 2THRN S,FOX D,BURGARD W,et al.Robust Monte Carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1/2):99-114.
  • 3DOUCET A,FREITAS N,GORDON N.Sequential Monte Carlo methods in practice[M].New York:Springer,2001.
  • 4DOUCET A,GODSILL S,ANDRIEU C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].State Compute,2000,10(3):197-208.
  • 5FOX D.KLD sampling:adaptive particle filters[J].International Journal of Robotics Research,2003,22 (12):985-1003.
  • 6KWOK C,FOX D,MEILA M.Adaptive real-time particle filters for robot localization[C]∥Proceedings of IEEE International Conference on Robotics and Automation.Taipei,China:IEEE,2003:2836-2841.
  • 7REKLEITIS I M.Cooperative localization and multi-robot exploration[D].Montreal,Canada:McGill University,2003.
  • 8DEREK K.Range only robot localization and SLAM with radio[D].Pittsburgh:Carnegie Mellon University,2004.
  • 9VAN DER MERWE R,DOUCET A,DE FREITAS N,et al.The unscented particle filter[R].Cambridge,UK:Cambridge University,2000.
  • 10ANDRIEU C,FREITAS N,DOUCET A.Sequential MCMC for Bayesian model selection[C]∥IEEE Higher Order Statistics Workshop.Ceasarea,Israel:IEEE,1999:130-134.

共引文献14

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部