期刊文献+

设计距离为9的q元BCH码的周期分布 被引量:2

Period distributions of q-ary BCH codes with designed distance 9
下载PDF
导出
摘要 通过对循环陪集的进一步研究和讨论,得到当取q大于7,m大于1时有关循环陪集的一个性质,得到了设计距离为9的q元BCH码的周期分布的计算公式:码的周期分布为q的幂,当码的周期不等于某些特殊值时,幂为码长与周期的最大公因数。当码的周期为特殊值时,幂为n/b-m[8/b],这里n是码的长度,b是由n和码的周期决定的2到8之间的整数,m是q模n的指数。由此计算公式和Mobius反转公式给出了无内周期码字个数的计数结果。 According to research of cyclotomic cosets m, the property of cyclotomic cosetscan be concluded when q〉7 and m〉l. The calculation formulae for period distribution of q-ary BCH codes with designed distance 9 are obtained based on the discussion of cyclo tomic cosets and property of cyclotomic polynomials: the period distribution is q' s power. When the period is unequal to some special values, the power is the GCD of code-length and the period. When the period is special value, the power is n/b-m[8/b], where n is the code-length, b is some number among 2 to 8 related to n and the period, and m is the index of q module n. The nonperiodic cyclic equivalence classes of this kind of codes can be counted due to the period distribution formula found and the Mobuis inverse.
作者 廖谨 陈小松
出处 《计算机工程与应用》 CSCD 2012年第4期132-134,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.11071062) 湖南省科技计划资助项目(No.2009FJ3197)
关键词 BCH码 循环陪集 周期分布 BCH Codes cyclotomic cosets period distribution
  • 相关文献

参考文献8

二级参考文献15

共引文献35

同被引文献18

  • 1符方伟,沈世镒.循环码的周期分布的新的计算公式[J].通信学报,1996,17(2):1-6. 被引量:22
  • 2Shor P W. Scheme for Reducing Decoherence in Quantum Computer memory. [ J]. Physical Review A: 1995.52 (4) : 2493-2496.
  • 3Steane A M. Multiple Particle Interference and Quantum Error Correction. [J]. Proc. Roy. Soc. Lond. A: 1996 (29).2551.
  • 4Calderbank A R, Rains E M, Shor P W, et al. Quantum error correction via codes over GF (4). [ J ]. Quantum Physics : 1998 ( 5 ) :7-25.
  • 5Vatan Farrokh, Roychowdhury Vwani P, Anantram M P. Spatially Correlated Qubit Errors and Burst- CorrectingQuantum Codes. [ J ]. 1EEE Transaction on Information Theory : 1999 ( 5 ) : 1703 - 1708.
  • 6Tokiwa Kin-ichiroh, Kiyama Kazutaka, Yamasaki Takahi- ro. Some Binary Quantum Codes with Good Burst-Error- Correcting Capabilities. [ J ] Osaka Sangyo University: 2005(116) :11-17.
  • 7Kawabata Shiro. Quantum Interleaver: Quantum Error Correction for Burst Error. [ J ]. arXiv : quant - ph/ 0002020v4 : 2000(27) : 3540-3543.
  • 8GUO Ying, ZENG Gui-hua. How to Combat Quantum Bursts of a Errors Efficiently. [ J ]. Journal of the Physi- cal Society of Japan :2006( 3 ) : 1-8 .
  • 9Grassl Markus,Rotteler Martin. Quantum Block and Conv- olutional Codes from Self-Orthogonal Product Codes [ J ]. Information Theory. 2007(19) 1018-1(P_2.
  • 10王新梅,肖国邦.纠错码-原理与方法.BCH码的描述及其距离限[M].修订版.西安:两安电子科技大学出版社,2011:242.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部