期刊文献+

应用非负矩阵分解和RBPNN模型的掌纹识别方法 被引量:3

Palmprint recognition methods using non-negative matrix factorization and RBPNN model
下载PDF
导出
摘要 提出一种基于非负矩阵分解(NMF)和径向基概率神经网络的掌纹识别方法。NFM是一种有效的图像局部特征提取算法,用于图像分类时能得到较高的识别率。考虑PolyU掌纹图像数据库,应用NMF、局部NMF(LNMF)、稀疏NMF(SNMF)和具有稀疏度约束的NMF(NMFSC)算法分别对掌纹图像进行特征提取,并对提取到的局部特征基图像进行分析对比;在特征提取的基础上,应用径向基概率神经网络(RBPNN)模型对掌纹特征进行分类,分类结果表明了RBPNN模型对掌纹特征具有较好的识别能力。实验对比结果证明了基于RBPNN的NMF掌纹识别方法在掌纹识别中的有效性,具有一定的理论研究意义和实用性。 A palmprint recognition method based on Non-negative Matrix Factorization (NMF) and Radial Basis Probabilistic Neural Network(RBPNN) is proposed. NMF is an efficient local feature extraction algorithm of images, and it can obtain high recognition rate in image classification task. Considered PolyU palmprint image database, the palm features are extracted by using several algorithms, such as NMF, Local NMF(LNMF), Sparse NMF(SNMF), and NMF with Sparseness Constraints(NMFSC) et al. And these feature ba- sis images extracted are analyzed and compared. On the basis of feature extraction, the RBPNN classifier is utilized to classify palm- print features, and the classification results show that the RBPNN model has better palmpriut recognition property. Compared classifica- tion results obtained by different algorithms, it is clear to see that the palmprint recognition results based on RBPNN and NMF are in- deed efficient, and these algorithms behave certain theory research meaning and application in practice.
出处 《计算机工程与应用》 CSCD 2012年第4期199-203,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60970058) 中国博士后科学基金资助项目(No.20060390180 200801231) 江苏省自然科学基金项目(No.BK2009131) 江苏省"青蓝工程"资助项目 2010苏州市职业大学创新团队资助项目(No.3100125)
关键词 非负矩阵分解 局部特征提取 特征基图像 掌纹识别 径向基概率神经网络(RBPNN)分类器 non-negative matrix factorization local feature extraction feature basis image palmprint recognition radial basis probabi-listic neural networks classifier
  • 相关文献

参考文献13

  • 1郭金玉,苑玮琦.基于非负矩阵分解和广义判别分析的掌纹识别[J].光学学报,2009,29(3):643-647. 被引量:3
  • 2Connie T,Teoh A,Goh M,et al.Palmprint recognition with PCA and ICA[C]//Processing of Image and Vision Computing New Zealand 2003,Palmerston North,New Zealand,2003.
  • 3Shang L,Huang D S,Du J X, et al.Palmprint recognition using FastlCA algorithm and radial basis probabilistic neural network[J]. Neurocomputing, 2006,69 ( 13/15 ) : 1782-1786.
  • 4Lee D D, Seung H S.Leaming the parts of objects by non-negative matrix factorization[J].Nature, 1999,401 : 788-791.
  • 5李乐,章毓晋.非负矩阵分解算法综述[J].电子学报,2008,36(4):737-743. 被引量:105
  • 6Kim B J.Active visual learning and recognition using incremental kernel PCA[J].Advances in Artificial Intelligence,2005:585-592.
  • 7Francis R B,Michael I J.Kemel independent component analysis[J]. Journal of Machine Learning Research,2002,3:1-48.
  • 8Li S Z, Hou X W, Zhang H J, et al.Leaming spatially localized parts-based representation[J].IEEE Comput Vis Pattern Recogni- tion,2001,1:207-212.
  • 9Hoyer P O.Non-negative matrix factorization with sparseness constraints[J].Joumal of Machine Learning Research, 2004, 5: 1427-1469.
  • 10Hoyer P O.Modeling receptive fields with non-negative sparse coding[J].Neurocomputing,2003,52(54) : 547-552.

二级参考文献107

  • 1陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报,2003,31(z1):2190-2193. 被引量:6
  • 2汪鹏.非负矩阵分解:数学的奇妙力量[J].计算机教育,2004(10):38-40. 被引量:10
  • 3LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 4苑玮琦,徐露,林忠华.基于灰度曲面匹配的虹膜识别方法[J].光学学报,2006,26(10):1537-1542. 被引量:18
  • 5Lu Guangming, Zhang David, Wang Kuanquan. Palmprint recognition using eigenpalms features [J]. Pattern Recognition Letters, 2003,24(9/10): 1463-1467.
  • 6Draper Bruce A, Baek Kyungim, Bartlett Marian Stewart, et al.. Recognizing faces with PCA and ICA[J]. Computer Vision and Image Under.standing, 2003,91(1/2) : 115-137.
  • 7Bartlett Marian Stewart, Movellan Javier R, Sejnowski Terrence J. Face recognition by independent component analysis[J]. IEEE Transaction on Networks, 2002,13(6):1450-1464.
  • 8Wu Xiangqian,Zhang David,Wang Kuanquan. Fisherpalms based palmprint recognition [J]. Pattern Recognition Letters, 2003, 24(15) : 2829-2838.
  • 9Weixiang Liu, Nanning Zheng. Non negative matrix factorization based on methods for object recognition[J]. Pattern Recognition Letters, 2004, 25(8): 893-897.
  • 10Chih Jen Lin. Projected gradient methods for non negative matrix factorization[J]. Neural Compuiation, 2007, 19 ( 10:2756-2779.

共引文献138

同被引文献27

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部