期刊文献+

城市区域交通信号的混沌模糊Q学习控制 被引量:2

Chaotic fuzzy Q-learning control for urban area traffic signals
下载PDF
导出
摘要 提出了一种解决城市区域交通协调控制问题的混沌模糊Q学习(C-FQL)方法。在模糊Q学习的过程中添加混沌扰动,以改进传统的Agent选择动作的方式,并通过遗忘因子以平衡模糊Q学习中探索和利用之间的关系。将该算法应用于城市区域交通协调控制中优化各信号交叉口的周期、绿信比和相位差。利用TSIS交通仿真平台,建立典型的城市区域交通网络并进行仿真。仿真结果表明该方法可以大大提高区域交通的整体效率。 A Chaotic Fuzzy Q-Learning (C-FQL) method which is used to solve the problem of urban area traffic coordinated control is put forward. It adds chaos disturbance into the fuzzy Q-learning to improve the traditional way of agent choosing action, and embeds the forgetting factor to balance the relationship between exploration and utilization in fuzzy Q-learning. It applies this algorithm to ur- ban area traffic coordinated control to optimize the cycle length, split, offset of each signalized intersection. This paper builds a classic urban traffic network and makes simulation based on the traffic simulation platform of TSIS. The results of simulation show that the method provided can greatly improve the whole efficiency of area traffic.
出处 《计算机工程与应用》 CSCD 2012年第4期207-210,共4页 Computer Engineering and Applications
基金 广东省自然科学基金(No.8152902001000014) 广东省高等学校自然科学重点研究项目(No.05Z025)
关键词 区域交通控制 Q学习 混沌变量 模糊控制 area traffic control Q-learning chaotic variable fuzzy control
  • 引文网络
  • 相关文献

参考文献14

二级参考文献28

  • 1刘怀亮.模拟退火算法及其改进[J].广州大学学报(自然科学版),2005,4(6):503-506. 被引量:15
  • 2邹恩,陈建国,李祥飞.一种改进的变尺度混沌优化算法及其仿真研究[J].系统仿真学报,2006,18(9):2426-2428. 被引量:19
  • 3王爽心,韩芳,朱衡君.静态负荷模型参数辨识的一种混沌优化策略[J].系统仿真学报,2006,18(10):2742-2745. 被引量:3
  • 4Narayanan A,Moore M.Quantum Inspired Genetic Algorithm[C] //Proceedings of IEEE International Conference on Evolutionary Computation.Piscataway,USA:IEEE Press,1996.
  • 5Teng Hao,Zhao Baohua,Yang Bingru.Study of Quantum Genetic Algorithm Based on Mutative Scale Chaotic Optimization[C] //Proceedings of International Conference on Intelligent Systems and Knowledge Engineering.Chengdu,China:[s.n.] ,2007:130-135.
  • 6Guo M,Liu Y,Malec J.A Bow Q-Learning algorithm based on the Metropolis criterion[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2004,34(5).
  • 7Berenji H R.Fuzzy Q-learning for generalization of reinforcement leaming[C]//Proceedings of the Fifth IEEE International Conference on Fuzzy System,8-11 Sep 1996,3:2208-2214.
  • 8Glorennec P Y,Jouffe L.Fuzzy Q-learning[C]//proceedings of the Sixth IEEE International Conference on Fuzzy System,1-5 July 1997,2:659-662.
  • 9Watkins C J C H,Dayan P.Q-learning[J].Machine Learning,1992,8(3):279-292.
  • 10Watkins C J C H.Learning from delayed rewards[D].England:University of Cambridge,1989.

共引文献393

同被引文献21

引证文献2

二级引证文献4

;
使用帮助 返回顶部