期刊文献+

PCA算法在P2P加密流量识别中的研究与应用 被引量:5

Research and Application of Identifying Encrypted P2P Traffic with PCA
下载PDF
导出
摘要 传统的应用层协议识别方法均从改进匹配算法的角度来提高识别率,但是随着P2P协议的发展,其特征呈现多维化的趋势,算法复杂度也随之提高。鉴于此,在对P2P流量的多维特征进行分析并提取后,采用主成分分析(PCA)算法将提取到的特征降维处理,并通过实验证明了该方法在网络流量识别上的可行性和有效性。 At present, improving matching algorithm is commonly used by traditional application layer protocol identification methods to raise identification rate, but with the development of P2P protocol, features are multi-dimensional, and algorithms are more complex too. In view of this, with the pretreatment by analyzing and extracting muhi-dimensional features of P2P traffic, Principal Component Analysis (PCA) algorithm is adopted to reduce the dimensions of features, and this strategy is approved feasible and effective through experiments.
作者 罗丞 叶猛
出处 《电视技术》 北大核心 2012年第3期62-65,共4页 Video Engineering
关键词 点对点流量 加密流量 多维特征 主成分分析法 降低维度 peer-to-peer traffic encrypted traffic multi-dimensional features principal component analysis reduce dimensions
  • 相关文献

参考文献9

二级参考文献40

  • 1马永成,莫德举.HART协议在多变量涡街流量计中的实现[J].微计算机信息,2005,21(1):13-14. 被引量:7
  • 2杨文涛,易志雄,刘卫忠,邹雪城,周国学.P2P网络流媒体播放系统研究[J].电视技术,2005,29(6):66-68. 被引量:15
  • 3SHARPE R, WARNICKE E. Wireshark user' s guide[EB/OL]. [2008-12-01 ].http://www.wireshark.org/docs/wsug_html_chunked/.
  • 4聚力传媒.About PPLive [EB/OL].[2008-12-01].http: / /www. pplive.comht tp://about .pplive.com/zh-cn/about/Company Info_11.html.
  • 5HEI Xiaojun,LIANG Chao,LIANG Jian,et al. Insights into PPLive:a measurement study of a largeScale P2P IPTV system. [EB/OL]. [2008-12-15].http://cis.poly.edu/-ross/papers/ppliveWorkshop.pdf.
  • 6Jose C. A Fast On - line Algorithm for PCA and Its Convergence Characteristics[J ]. IEEE, Transactions on Neural Network ,2000,4(2) :299 - 307.
  • 7Jabri M. Robust Principle Component Analysis[J]. IEEE,Transactions on Neural Network, 2000,1 (1) : 289 - 298.
  • 8Wcmg A S Y. A Unified Sequential Method for PCA [ J ].IEEE, Transactions on Neural Network, 1998,9 (2) : 583 -586.
  • 9Lu Congde. Adaptive Robust kernel Algorithm [ J ]. IEEE,Transactions on Neural Network,2003,3(3) :621 - 624.
  • 10A.Lakhina,K.Papagiannaki,M.Crovella,C.Diot,E.D.Kolaczyk,and N.Taft.Structural Analysis of Network Traffic Flows.In ACM SIGMETRICS,New York,June 2004.

共引文献75

同被引文献38

  • 1王建勇.多径瑞利快衰落信道下OFDM信号的识别[J].微计算机信息,2008,24(6):122-123. 被引量:6
  • 2刘献玲,陈健,阔永红,王甫莉.基于累量的OFDM信号调制识别[J].电子科技,2007,20(2):29-32. 被引量:4
  • 3张贤达 保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1999.228-258.
  • 4KOKIOPOULOU E,SAAD Y. Enhanced graph-based dimensionality re- duction with repulsion Laplaceans [ J ]. Pattern Recognition, 2009,42 ( 11 ) :2392-2402.
  • 5王飞.图上的半监督学习算法研究[D].北京:清华大学,2008.
  • 6TENENBAUM J B,SILVA V D,LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290: 2319-2322.
  • 7] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[ J]. Science,2000, 290:2323-2326.
  • 8BELKIN M,NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation,2003,15(6):1373-1396.
  • 9XU D, YAN S, TAO D, et al. Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval[J]. IEEE Trans. Image Processing,2007,16 ( 11 ) :2811-2821.
  • 10ARTINEZ A M,KAK A C. PCA versus LDA[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001,23(2) :228-233.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部