摘要
传统的应用层协议识别方法均从改进匹配算法的角度来提高识别率,但是随着P2P协议的发展,其特征呈现多维化的趋势,算法复杂度也随之提高。鉴于此,在对P2P流量的多维特征进行分析并提取后,采用主成分分析(PCA)算法将提取到的特征降维处理,并通过实验证明了该方法在网络流量识别上的可行性和有效性。
At present, improving matching algorithm is commonly used by traditional application layer protocol identification methods to raise identification rate, but with the development of P2P protocol, features are multi-dimensional, and algorithms are more complex too. In view of this, with the pretreatment by analyzing and extracting muhi-dimensional features of P2P traffic, Principal Component Analysis (PCA) algorithm is adopted to reduce the dimensions of features, and this strategy is approved feasible and effective through experiments.
出处
《电视技术》
北大核心
2012年第3期62-65,共4页
Video Engineering
关键词
点对点流量
加密流量
多维特征
主成分分析法
降低维度
peer-to-peer traffic
encrypted traffic
multi-dimensional features
principal component analysis
reduce dimensions