期刊文献+

近视成年国人角膜的形态及数学模型研究 被引量:2

Measurement of corneal shape and its use in mathematical models of adult Chinese myopic eyes
原文传递
导出
摘要 目的 研究近视成年国人角膜的前、后表面形态并建立其数学模型.方法 数字模拟研究.用OrbscanⅡZ采集494只近视眼角膜前、后表面的地形图数据,计算得到角膜前、后表面各特定点三维坐标值(X值、Y值、Z值)并且导入统计学软件SAS 8.01,用非线性回归法拟合判断单眼角膜前、后表面形态并分析其相关因素.以1.00 D为梯度将角膜前表面屈光力为40.00~47.00 D的眼分为7组,随机选择每一组90%的眼,以非线性回归法拟合每一组角膜前、后表面的通用数学方程;根据通用数学方程预测每一组剩余10%的眼的角膜前、后表面各特定点的Z轴坐标值,将预测和实测的各Z轴坐标值用SPSS软件进行相关性检验,判断拟合方程的质量.结果 近视成年国人角膜前表面均为椭球面,后表面93.9%为椭球面,5.1%为椭圆抛物面,1.0%为双叶双曲面.计算得到7组角膜前、后表面共14个数学模型.角膜前、后表面所有Z轴坐标的预测值与实测值的相关系数r均>0.99(P<0.01).结论 近视成年国人角膜的前表面和绝大多数后表面均为椭球面;运用合理的分组和非线性回归拟合,可建立较为精确的近视成年国人角膜的数学模型. Objective To investigate the shapes of corneal anterior and posterior surfaces and use these shapes in mathematical models of the myopic eyes of adult Chinese.Methods This was a numerical Simulation.Four hundred ninety-four corneal topographies of myopic patients were measured with an Orbscan Ⅱ Z.The specified points of the X-,Y-,Z-axis coordinate values of the anterior and posterior corneal surfaces were calculated from the Orbscan Ⅱ Z data and imported for modeling using SAS 8.01.Ninety percents of the eyes were randomly selected from each group for modeling.The anterior and posterior corneal surface shapes were fitted using SAS 8.01 statistical software by a non-linear regression method using the relevant parameters of the corneal surface data.Front corneal refractive powers from 40.00 D to 47.00 D were divided into 7 groups based on 1.00 D intervals.The Z coordinate values of the remaining 10% of the eyes from each group were predicted based on the mathematical models.The predicted results and the actual values were compared using correlations.Results An ellipsoid was found to fit all corneal anterior surfaces and 93.9% of the posterior surfaces of myopic adults.The corneal posterior surfaces were parabaloid in 5.1% of the cases and were hyperbolic in 1.0%.Fourteen mathematical models were demonstrated to fit the anterior and posterior corneal surface data.The correlation coefficient for the Z-axis coordinates of the predicted results and the actual values was r〉0.99 (P〈0.01).Conclusion An ellipsoid is found to fit all corneal anterior surfaces and a majority of the posterior surfaces in myopic adults.Precise anterior and posterior corneal surface mathematical models could be established by reasonable groupings and a non-linear regression method.
出处 《中华眼视光学与视觉科学杂志》 CAS 2011年第6期426-430,共5页 Chinese Journal Of Optometry Ophthalmology And Visual Science
关键词 模型 统计学 回归分析 角膜 近视 Model, statistical Regression analysis Cornea Myopia
  • 相关文献

参考文献4

二级参考文献33

  • 1邵婷婷,郑穗联,王波,施明光.正常个体人眼角膜空间形态数学建模路线研究[J].眼视光学杂志,2005,7(4):253-256. 被引量:7
  • 2张艳玲,邵婷婷,施明光.正常人角膜椭球形态光学轨迹的初步验证[J].中华眼科杂志,2006,42(11):992-997. 被引量:8
  • 3朱乐如,查屹,施明光.两种角膜地形图系统测量正视儿童角膜的比较[J].眼视光学杂志,2007,9(2):120-123. 被引量:4
  • 4Douthwaite WA, Burek H. Mathematical models of the general corneal surface{J]. Ophthal Physiol Opt, 1993 ,13 (1):68-72.
  • 5Preussner PR,Wahl J, Kramann C. Corneal model [J]. J Cataract Refract Surg,2003,29(3):471-477.
  • 6Davis WR, Raasch TW, Mitchell GL, et al. Corneal Asphericity and Apical Curvature in Children:A Cross-sectional and Longitudinal Evaluation [J].Invest Ophthalmol Vis Sci, 2005, 46(6): 1899-1906.
  • 7Baker, TY. Ray tracing through non-spherical Surfaces[J]. Proe Phys Soc, 1943,55:361-364.
  • 8Homer DG, Soni PS, Vyas N,et al. Longitudinal changes in corneal asphericity in myopia [J]. Optom Vis Sci,2000,77(4): 198-203.
  • 9von Helmholtz H.Helmholtz′s treatise on physiological optics.New York:The Optical Society of America,1924.5.
  • 10Mandell RB,St Helen R.Mathematical model of corneal contour.Br J Physiol Opt,1971,26:183-197.

共引文献18

同被引文献27

  • 1施明光,王波,邵婷婷.正常国人全角膜数字模型的建立[J].中华眼科杂志,2007,43(8):694-697. 被引量:12
  • 2Langenbucher A, Seitz B, Naumann GO. Three-axis ellipsoidal fitting of videokeratoscopic height data after penetrating keratoplasty. Curt Eye Res, 2002,24:422-429.
  • 3Bennett AG, Rabbetts RB. What radius does the convential keratometer measure? Ophthalmic Physiol Opt,1991,11:239 - 247.
  • 4Cheung SW, Cho P, Douthwaite W. Corneal shape of HongKong-Chinese. Ophthalmic Physiol Opt, 2000,20 : 119-125.
  • 5Read SA, Collins MJ, Carney LG, et al. The topography of the central and the peripheral cornea. Invest Ophthalmol Vis Sei ,2006,4 : 1404-1414.
  • 6Carney LG, Mainstone JC, Henderson BA. Comeal topography and myopia. A cross-sectional study. Invest Ophthalmol Vis Sci, 1997,38 : 311-320.
  • 7Mainstone JC, Carney LG, Anderson CR, et al. Corneal shape in hyperopia. Clin Exp Optom, 1998,81 : 131-137.
  • 8Seholz K, Messner A, Eppig T, et al. Topography-based assessment of anterior corneal curvature and aspherieity as a function of age, sex, and refractive status. J Cataract Refract Surg, 2009,35 : 1046-1054.
  • 9Ying J, Wang B, Shi M. Anterior corneal asphericity calculated by the tangential radius of curvature. J Biomed 0pt,2012,17: 075005.
  • 10Bufidis T, Constas AGP, Mamtziou E. The role of computerized corneal topography in rigid gaspermeable contact lens fitting. J CLAO, 1998,24 : 206-209.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部