期刊文献+

甘蓝型油菜BnGOLS1基因启动子的克隆、序列分析及瞬时表达 被引量:3

Cloning,Sequence Analysis and Transient Expression of BnGOLS1 Gene Promoter from Brassica napus
原文传递
导出
摘要 以甘蓝型油菜‘德油五号’基因组DNA为模板,通过反向PCR扩增得到肌醇半乳糖苷合成酶基因(BnGOLS1)启动子片段,长度为827bp。PLACE和PlantCARE启动子预测工具分析表明:序列中含有TATA-Box、CAAT-Box等基本转录元件,以及ABRE、DRE、HSE、w-Box等顺式作用元件。将克隆得到的BnGOLS1启动子取代pBI121中的CaMV35S启动子,构建BnGOLS1启动子控制报告基因的GUS表达载体pBI-GS-GUS,通过农杆菌介导的方法在油菜组织中进行瞬时表达。GUS染色结果表明BnGOLS1启动子可以驱动GUS基因在油菜组织中的表达。 The BnGOLS1 promoter fragment(827 bp) was amplified from the genomic DNA of Brassica napus by inverse polymerase chain reaction.Promoter sequence analysis by PLACE and PlantCARE showed that the cloned fragment contained several putative cis-elements,such as abscisic acid response element(ABRE),dehydration-responsive element(DRE),heat shock elements(HSE),WRKY transcription factor recognition site w-Box and so on,as well as TATA-Box and CAAT-Box.A recombinant vector designated as pBI-GS-GUS was generated through the replacement of CaMV35S promoter in pBI121 by the cloned BnGOLS1 promoter fragment,in which the reporter GUS is under the control of BnGOLS1 promoter.Transient expression of pBI-GS-GUS in Brassica napus was performed by Agrobacterium tumefaciens mediated method.Histochemical staining of GUS revealed that the promoter of BnGOLS1 could drive the expression of GUS gene in Brassica napus.
出处 《植物生理学报》 CAS CSCD 北大核心 2012年第1期67-74,共8页 Plant Physiology Journal
基金 国家林业公益性行业科研专项(201104024) 国家林业局引进国际先进农业科学技术计划(“948”项目)(2011-4-54)
关键词 油菜 BnGOLS1基因启动子 序列分析 瞬时表达 Brassica napus BnGOLS1 promoter sequence analysis transient expression
  • 相关文献

参考文献12

  • 1Zhi Wang,Yan Zhu,Lili Wang,Xia Liu,Yongxiu Liu,Jonathan Phillips,Xin Deng.A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter[J].Planta.2009(6)
  • 2M. Dulce Barros,Eva Czarnecka,William B. Gurley.Mutational analysis of a plant heat shock element[J].Plant Molecular Biology.1992(4)
  • 3Horbowicz M,Obendorf RL.Seed desiccation tolerance and storability:dependence on?atulence-producing oligosaccharides and cyclitols—review and survey[].Seed Science Research.1994
  • 4Ishibashi Y,Yamaguchi H,Yuasa T,Iwaya-Inoue M,Arima S,Zheng SH.Hydrogen peroxide spraying alleviates drought stress in soybean plants[].Journal of Plant Physiology.2011
  • 5Li X,Zhuo JJ,Jing Y,Liu X,Wang XF.Expression of a GA-LACTINOL SYNTHASE gene is positively associated with desic-cation tolerance of Brassica napus seeds during development[].Journal of Plant Physiology.2011
  • 6Nishizawa A,Yabuta Y,Shigeoka S.Galactinol and raffi nose constitute a novel function to protect plants from oxidative dam-age[].Plant Physiology.2008
  • 7Nishizawa A,Yabuta Y,Yoshida E,Maruta T,Yoshimura K,Shigeoka S.Arabidopsis heat shock transcription factor A2as a key regulator in response to several types of environmental stress[].Plant Journal The.2006
  • 8Panikulangara TJ,Eggers-Schumacher G,Wunderlich M,Stransky H,Schof?F.Galactinol synthase1.A novel heat shock factor target gene responsible for heat-induced synthesis of raffi-nose family oligosaccharides in Arabidopsis[].Plant Physiology.2004
  • 9Suzuki N,Sejima H,Tam R,Schlauch K,Mittler R.Identifi cation of the MBF1heat-response regulon of Arabidopsis thaliana[].Plant Journal The.2011
  • 10Brenac, P,Horbowicz, M,Downer, S.M,Dickerman, A.M,Smith, M.E,Obendorf.Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.)seed development and maturation[].Plant Physiology.1997

同被引文献41

  • 1Sibert P D, Chenchik A, Kellogg D E, et al. An improved PCR method for walking in uncloned genomic DNA[J]. Nucleic Acids Research, 1995, 23(6): 1 087-1 088.
  • 2Pickering I J, Wright C, Bubner B, et al. Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus[J]. Plant Physiology, 2003, 131(3): 1460-1467.
  • 3LeDuc D L, Tarun A S, Montes-Bayon M, et al. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian Mustard increases selenium tolerance and accumulation[J]. Plant Physiology, 2004, 135(1): 377-383.
  • 4Ellis D R, Sors T G, Brunk D G, et al. Production of Se- methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase[J]. BMC Plant Biology, 2004, 4:1-11.
  • 5Lyi S M, Heller L I, Rutzke M, et al. Molecular and biochemical characterization of the Selenocysteine Se-Methyltransferase gene and Se-Methylselenocysteine synthesis in broccoli [J]. Plant Physiology, 2005, 138(1): 409-420.
  • 6Zhu L, Deng W W, Ye A H, et al. Cloning of two cDNAs encoding a family of ATP sulfurylase from Camellia sinensis related to selenium or sulfur metabolism and functional expression in Escherichia coli[J]. Plant Physiology and Biochemistry, 2008, 46(8): 731-738.
  • 7Kandul N P, Noor M A. Large introns in relation to ahernative splicing and gene evolution:a case study of Drosophila bruno-3[J]. BMC Genetics, 2009, 10: 67.
  • 8Sun N E,Sun D X, Zhu D X. Molecular Genetics[M]. Nanjing University Press, 1990: 7. (in Chinese).
  • 9Salgueiro S, Piguocchi C, Parry M A J. Intron-mediated gusA expression in tritordeum and wheat resulting from particle bombardment[J]. Plant Molecular Biology, 2000, 42(4): 615- 622.
  • 10Lin Y L, Lai Z X. Analyses on activities and isozymatie patterns of SOD during early somatic embryogenesis in longan[J]. Acta Horticuhurae, 2010, 863: 169-174.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部