期刊文献+

侧向冲击载荷作用下股骨-骨盆复合体的生物力学响应 被引量:11

Biomechanical response of the pelvis femur complex under lateral pelvic impacts during sideways falls
下载PDF
导出
摘要 目的利用三维有限元分析方法研究股骨-骨盆复合体在人体侧向摔倒时冲击载荷作用下的生物力学行为特性。方法基于中国力学虚拟人模型库建立股骨-骨盆-软组织复合体的三维有限元模型,包括皮质骨、松质骨和软组织;同时,构建一个刚体平面仿真地面。约束地面刚体,对整个股骨-骨盆-软组织复合体模型施加侧向2 m/s的速度载荷,整个仿真分析时间设定为20 ms。通过三维有限元分析计算获得股骨-骨盆侧摔冲击过程中应力应变变化特性。结果在13 ms时,股骨大转子处软组织与地面的接触力达到最大值7 656 N,对应的骨盆软组织上的最大等效应力值为2.64 MPa。冲击过程中,耻骨联合处骨皮质上等效应力出现极大值,为142.64 MPa,接近其屈服强度;股骨颈和大转子处应力水平较高,股骨颈处皮质骨上的最大等效应力值为76.49 MPa;股骨颈处松质骨上的最大等效应力值为8.44 MPa,最大压缩应变值为0.94%;股骨大转子处松质骨上的最大等效应力值为8.50 MPa,最大压缩应变值为0.93%。结论人体股骨-骨盆复合体在侧摔减速冲击载荷作用下股骨颈、大转子及耻骨联合处易出现骨折。 Objective To investigate the biomechanical characteristics of the human pelvis-femur complex under lateral pelvic impacts during sideways falls using three dimensional (3 D) finite element (FE) method. Methods Based on the model database of China Mechanical Virtual Human, a 3D FE model of the pelvis-femur-soft tissue complex was created, including cortical bone, cancellous bone and soft tissue capsule. A rigid plane model was also constructed for ground simulation and constrained in all freedoms. The average hip lateral impact veloci- ty of 2 m/s was applied to the model and the time for simulation analysis was set at 20 ms. The stress and strain distribution on the pelvis-femur complex were obtained by the 3D FE calculation and analysis. Results On the contact surface, the peak impact load reached to 7 656 N at 13 ms, while the maximum Von Mises stress on thesoft tissue was 2.64 MPa. Simultaneously, the peak Von Mises stress of 142.64 MPa on the cortical bone oc- curred in the region of pubic symphysis, which was approximate to the yield stress on the cancellous bone. The Von Mises stress level was higher in the region of the femur neck and greater trochanter. At 13 ms, the peak Von Mises stress on the cortical bone of the femur neck was 76.49 MPa and that on the cancellous bone was 8.44 MPa with the peak compressive principal strain being 0.94%. The peak Von Mises stress on the cancellous bone of greater trochanter was 8.50 MPa, while the peak compressive principal strain was 0.93%. Conclusions Bone fractures of the pelvis-femur complex tend to occur in the region of the femur neck, greater trochanter and pubic symphysis under deceleration impacts during sideways falls.
出处 《医用生物力学》 EI CAS CSCD 2011年第6期502-507,共6页 Journal of Medical Biomechanics
基金 国家科技支撑计划课题(2008BAI68B06) 上海交通大学“医工(理)交叉研究基金”项目(YG2010MS09)
关键词 股骨-骨盆复合体 侧摔 减速冲击 生物力学 有限元分析 应力分布 Pelvis-femur complex Sideways fall Deceleration impact Biomechanics Finite element analysisStress distribution
  • 相关文献

参考文献11

  • 1Wagner EH,LaCroix AZ,Grothaus L,et al.Preventingdisability and falls in older adults:A population-based ran-domized trial[J].Amer J Public Health,1994,84(11):1800-1806.
  • 2苏佳灿,管华鹏,张春才,陈学强,王保华,吴建国,丁祖泉.冲击载荷作用下骨盆三维有限元分析及其生物力学意义[J].中国骨伤,2007,20(7):455-457. 被引量:15
  • 3Li ZP,Kim JE,Davidson JS,et al.Biomechanical re-sponse of the pubic symphysis in lateral pelvic impacts:Afinite element study[J].J Biomech,2007,40(12):2758-2766.
  • 4David PB,Greg JD,Robert RL,et al.Bone mineral densi-ty correlates with fracture load in experimental side impactsof the pelvis[J].J Biomech,2003,36(2):219-227.
  • 5Snedeker JG,Walz FH,Muser MH,et al.Microstructuralinsight into pedestrian pelvic fracture as assessed by high-resolution computed tomography[J].J Biomech,2006,39(14):2709-2713.
  • 6Groen BE,Weerdesteyn V,Duysens J.The relation be-tween hip impact velocity and hip impact force differs be-tween sideways fall techniques[J].J Electromyograph Ki-nesiol,2008,18(2):228-234.
  • 7Majumder S,Roychowdhury A,Pal S.Simulation of hipfracture in sideways fall using a 3D finite element model ofpelvis-femur-soft tissue complex with simplified representa-tion of whole body[J].Med Eng Phy,2007,29(10):1167-1178.
  • 8Majumder S,Roychowdhury A,Pal S.Effects of trochan-teric soft tissue thickness and hip impact velocity on hipfracture in sideways fall through 3D finite element simula-tions[J].J Biomech,2008,41(13):2834-2842.
  • 9王成焘.中国力学虚拟人[J].医用生物力学,2006,21(3):172-178. 被引量:38
  • 10叶铭,张绍祥,王成焘.力学虚拟人骨组织曲线曲面模型重建技术[J].医用生物力学,2006,21(3):212-216. 被引量:8

二级参考文献18

  • 1苏佳灿,张本,禹宝庆,张春才,陈学强,王保华,丁祖泉.Three dimensional finite element analysis of acetabulum loaded by static stress and its biomechanical significance[J].Journal of Medical Colleges of PLA(China),2005,20(6):377-382. 被引量:1
  • 2Marco V, Mario D, Fulvia T, et al. Three dimensional shape reconstruction and finite element models to be used in clinical studies[J]. J Biomech, 2004; 37:1597-1605.
  • 3冯元桢.生物力学[M].北京:科学出版社,1994.3.
  • 4Cheung JT, Zhang M, Leung AK, et al. Three-dimensional finite element analysis of the foot during standing-a material sensitivity[J]. J Biomech, 2005; 38:353-358.
  • 5Kadaba MP, Ramakrishan HK, Wooten ME, et al.Repeatability of kinematic, kinetlc, and electromyographic data fn normal adult galt[J]. J Ortho Research, 1989, 7: 849-860.
  • 6Carson MC, Harington ME, Thompson N, et al. Kinematic analysis of multi-segment foot model for research and clinical applications:A repeatability analysis [J]. J Biomech, 2001,34:1299-1307.
  • 7Gross MD, Arbel G, Hershkovitz I. Three-dimensional finite element analysis of the facial skeleton on simulated occlusal loading[J]. J Oral Rehabil, 2001,28(7):684-694.
  • 8Butler DL, Goods ES, Noyes FR, et al. Biomechanics of ligaments and tendons [J]. Exercise and Sports Science Review, 1978,6: 125-181.
  • 9Marcus GP. Computer modeling and simulation of human movement [J]. Annu Rev Biomed Eng, 2001,3: 245-273.
  • 10Tony MK, Elise FM, Glen LN. Biomechanics of trabecular bone [J]. Annu Rev Biomed Eng, 2001,3: 307-333.

共引文献55

同被引文献211

引证文献11

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部