期刊文献+

基于显露模式的对比挖掘研究及应用进展 被引量:8

Survey on emerging pattern based contrast mining and applications
下载PDF
导出
摘要 对比挖掘是近年来数据挖掘领域的新热点之一。对比挖掘关注并描述不同类别和条件下,或随时间变化的知识,旨在设计能够发现刻画数据集中不同类别或条件的样本间差异的模式或模型的方法。由于对比挖掘技术能化繁为简、准确分类,在实践中得到广泛应用。显露模式的挖掘和应用是对比挖掘的重要分支。综述了显露模式的背景、基本概念和原理,分析了显露模式的挖掘方法,讨论了显露模式的扩展定义和挖掘,介绍了基于显露模式的分类器构造方法,展示了显露模式的若干实际应用,展望了基于显露模式的对比挖掘的未来研究。 Contrast mining is one of fairly new hot data mining topics. Contrast mining focuses on knowledge that describes differences between classes and conditions, or describes changes over time. Contrast mining aims at developing techniques to discover patterns or models that contrast, and characterize multiple datasetsassoeiated with different classes or conditions. Contrast mining has wide applications in reality, due to its ability of simplifying problems and classifying accurately. Research on the mining and application of emerging patterns represents a major direction of contrast mining. This paper provided a survey of such issue. More specifically, after introducing the background, basic concepts and principles of emerging patterns, the paper analyzed the mining methods of emerging patterns, discussed extended definitions of emerging patterns and their mining, stated methods for constructing emerging pattern based classifiers, and illustrated applications of emerging pattern in several real-world fields. Finally, this paper gave out some topics for future research on emerging pattern based contrast mining.
出处 《计算机应用》 CSCD 北大核心 2012年第2期304-308,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61103042,61173099) 高等学校博士学科点专项科研基金资助项目(20100181120029) 四川大学青年教师科研启动基金资助项目(2009SCU11030)
关键词 数据挖掘 显露模式 模式发现 频繁项集 分类 data mining emerging pattern pattern discovery frequent itemset classification
  • 相关文献

参考文献24

  • 1AGRAWAL R,SRIKANT R.Fast algorithms for mining association rules[C]//Proceedings of the 20th International Conference on Very Large Data Bases.San Francisco:Morgan Kaufmann,1994:487-499.
  • 2BAY D S,PAZZANI M J.Detecting change in categorical data:mining contrast sets[C]// Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,1999:302-306.
  • 3WANG HAIXUN,FAN WEI,YU P S,et al.Mining concept-drifting data streams using ensemble classifiers[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2003:226-235.
  • 4DONG GUOZHU,LI JINYAN.Efficient Mining of emerging patterns:discovering trends and differences[C]// Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,1999:43-52.
  • 5BAILEY J,MANOUKIAN T,RAMAMOHANARAO K.Fast algorithms for mining emerging patterns[C]// Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery.London:Springer-Verlag,2002:39-50.
  • 6FAN HONGJIAN,RAMAMOHANARAO K.An efficient single-scan algorithm for mining essential jumping emerging patterns for classification[C]// Proceedings of the 6th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining.London:SpringerVerlag,2002:456-462.
  • 7LI JINYAN,LIU GUIMEI,WONG L.Mining statistically important equivalence classes and delta-discriminative emerging patterns[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2007:430-439.
  • 8BAILEY J,MANOUKIAN T,RAMAMOHANARAO K.A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns[C]//Proceedings of the Third IEEE International Conference on Data Mining.Washington,DC:IEEE Computer Society,2003:485-488.
  • 9MINATO S.Zero-suppressed BDDs for set manipulation in combinatorial problems[C]// Proceedings of the 30th International Design Automation Conference.New York:ACM,1993:272-277.
  • 10LOEKITO E,BAILEY J.Fast mining of high dimensional expressive contrast patterns using zero-suppressed binary decision diagrams[C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2006:307-316.

二级参考文献18

共引文献3

同被引文献70

  • 1彭京,杨冬青,唐世渭,王腾蛟,高军.基于概念相似度的文本相似计算[J].中国科学(F辑:信息科学),2009,39(5):534-544. 被引量:17
  • 2范明,刘孟旭,赵红领.一种基于基本显露模式的分类算法[J].计算机科学,2004,31(11):211-214. 被引量:11
  • 3肖雪,何中市.基于向量空间模型的中文文本层次分类方法研究[J].计算机应用,2006,26(5):1125-1126. 被引量:12
  • 4彭京,杨冬青,唐世渭,付艳,蒋汉奎.一种基于语义内积空间模型的文本聚类算法[J].计算机学报,2007,30(8):1354-1363. 被引量:44
  • 5HAN J,MICHELINE K.数据挖掘概念与技术[M].北京:机械工业出版社,2004.
  • 6Williams G J, Christen R Visualizing temporal cluster changes using relative density self-organizing maps[J]. Knowledge and Information Systems, 2010, 25(2): 281-302.
  • 7Kim J K, Song H S. Kim T S, et al. Detecting the change of cus- tomer behavior based on decision tree analysis[J]. Expert Sys- tems, 2005, 22(4): 193-205.
  • 8Shih M J, Liu D R, Hsu M L. Discovering competitive intel- ligence by mining changes in patent trends[J]. Expert Systems with Applications, 2010, 37(4): 2882-2890.
  • 9Song H S, Kim J K, Kim S H. Mining the change of customer behavior in an intemet shopping mall[J]. Expert Systems with Applications, 2001, 21(3): 157-168.
  • 10Chen M C, Chiu A L, Chang H H. Mining changes in customer behavior in retail marketing[J]. Expert Systems with Applica- tions, 2005, 28(4): 773-781.

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部