期刊文献+

动态复杂网络的同步拓扑演化 被引量:8

Topological evolution on synchronization of dynamic complex networks
下载PDF
导出
摘要 在定性讨论复杂网络模型的同步性能后,仿真分析了较大网络尺寸的情况,通过数据分析比对、网络拓扑的可视化和拓扑的模拟退火演化,寻找到了同步优化的一定规律,即度分布和平均距离均匀化、集中化;簇系数的适当调节对同步性能影响不大,但能减少网络连接等。结合未来智能电力网发展的实际情况,制定了同步稳定性优化策略,并在美国西部电力网数据上进行实验,探索从拓扑角度优化实际网络的应用价值,满足实时性、稳定性、分布式等要求。通过特征值比这一评价指标的对比证明优化有效。 After qualitative discussion of the synchronization performance in complex network models, simulation analysis of the networks with relatively larger size was presented. Through data analysis, network topology visualization, and topology evolution with simulated annealing algorithm, some rules of synchronization optimization were found, that is, making the degree distribution and average distance uniform and centralized, and proper clustering coefficient can reduce network connection without influencing synchronization. Considering the situation of future power grid, optimization strategies for the stability of synchronization were developed and tested on the data of the actual power grid, exploring the application value of optimizing practical networks from the angle of topology and satisfying the requirement of real-time quality, stability and distribution. The optimization is proved to be effective.
作者 朱亮 韩定定
出处 《计算机应用》 CSCD 北大核心 2012年第2期330-334,339,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(11075057 10775167 10979074)
关键词 同步 复杂网络 特征值比 模拟退火 电力网 synchronization complex network eigenratio Simulated Annealing (SA) power grid
  • 相关文献

参考文献9

  • 1PECORA L M,CARROLL T L.Master stability functions for synchronized coupled systems[J].Physical Review Letters,1998,80(10):2109-2112.
  • 2BARAHONA M,PECORA L M.Synchronization in small-world systems[J].Physical Review Letters,2002,89(5):054101.
  • 3DONETTI L,HURTADO P I,MU(N)OZ M A.Entangled networks,synchronization,and optimal network topology[J].Physical Review Letters,2005,95:188701.
  • 4GOROCHOWSKI T E,di BERNARDO M,GRIERSON C S.Evolving enhanced topologies for the synchronization of dynamical complex networks[J].Physical Review E,2010,81:056212.
  • 5赵明,周涛,陈关荣,汪秉宏.复杂网络上动力系统同步的研究进展Ⅱ-如何提高网络的同步能力[J].物理学进展,2008,28(1):22-34. 被引量:12
  • 6BARABASI A-L,ALBERT R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.
  • 7WATI'S D J,STROGATZ S H.Collective dynamics of 'small-world'networks[J].Nature,1998,393(6684):440-442.
  • 8LEE E A.Cyber physical systems:Design challenges[C]//ISORC 2008:11th IEEE International Symposium on Object Oriented Realtime Distributed Computing.Piscataway:IEEE,2008:363-369.
  • 9CHEN GUO,DONG ZHAOYANG,HILL D J,et al.Attack structural vulnerability of power grids:a hybrid approach based on complex networks[J].Physica A:Statistical Mechanics and its Applications,2010,389(3):595-603.

二级参考文献71

共引文献11

同被引文献93

  • 1袁炜,成金华.中国清洁能源发展现状和管理机制研究[J].理论月刊,2008(12):26-29. 被引量:17
  • 2王先甲,全吉,刘伟兵.有限理性下的演化博弈与合作机制研究[J].系统工程理论与实践,2011,31(S1):82-93. 被引量:152
  • 3胡海波,王林.幂律分布研究简史[J].物理,2005,34(12):889-896. 被引量:87
  • 4HUBERMAN A,PIROLLI P,PltKOW J. Strong regularitiesin World Wide Web surfing [ J]. Science, 1998,280(5360) : 95-96.
  • 5WILKINSON. Strong regularities in online peer production[C]// The 9th AG-M conference on electronic commerce.Chicago : Springer2008 ; 302-309.
  • 6Google. The 1000 most-visited sites on the web [EB/OL]USA:: Google ( 2011-07-19). [ 2012-10-25]. http://www.google, com/adplanner/static/ top1000.
  • 7NEWMAN M E J. Power laws, pareto distributions andZipf,s law[ J] .Contemporary Physics,2005,46;323-351.
  • 8BARB ASI. Emergence of scaling in random network [J]. Sc-cience, 1999,286:509-512.
  • 9ENGLE ROBERT. The use b. ARCH/GARCH models inapplied econometrics [ J] Economic Perspectives, 2001, 15(4):157-168.
  • 10BOLLERSLEV. Modeling the coherence in short-run nomi-nal exchange rates : a multivariate generalized ARCH model[J]. The Review of Economics and Statistics, 1990,7( 1):498-505.

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部