期刊文献+

核向量机与支持向量机相结合的二阶段快速学习方法

Two-stage fast training method based on core vector machine and support vector machine
下载PDF
导出
摘要 支持向量机(SVM)作为一种有效的模式分类方法,当数据集规模较大时,学习时间长、泛化能力下降;而核向量机(CVM)分类算法的时间复杂度与样本规模无关,但随着支持向量的增加,CVM的学习时间会快速增长。针对以上问题,提出一种CVM与SVM相结合的二阶段快速学习算法(CCS),首先使用CVM初步训练样本,基于最小包围球(MEB)筛选出潜在核向量,构建新的最有可能影响问题解的训练样本,以此降低样本规模,并使用标记方法快速提取新样本;然后对得到的新训练样本使用SVM进行训练。通过在6个数据集上与SVM和CVM进行比较,实验结果表明,CCS在保持分类精度的同时训练时间平均减少了30%以上,是一种有效的大规模分类学习算法。 Support Vector Machine (SVM) is a widely used classification technique. But the scalability of SVM to handle large data sets still needs much of exploration. Core Vector Machine (CVM) is a technique for scaling up a two class SVM to handle large data sets. However, it is computationally infeasible to use CVM to deal with the data set with mass Support Vectors (SV), as its training time is related to the number of SV. In this paper, a two-stage training algorithm combining CVM with SVM (CCS) was proposed. It first employed Minimum Enclosing Ball (MEB) based CVM algorithm to determine the potential core vectors, and then used labeling method to rapidly reconstruct training set, which aim is to reduce the scale of training set. After obtaining new training samples, SVM was adopted to deal with them. The experimental results indicate that the proposed approach can reduce the training time by 30% without losing the classification accuracy, and it is an efficient method for handling large-scale classification.
出处 《计算机应用》 CSCD 北大核心 2012年第2期419-424,共6页 journal of Computer Applications
关键词 支持向量机 分类 大规模数据集 核向量机 最小包围球 Support Vector Machine (SVM) classification large data set Core Vector Machine (CVM) MinimumEnclosing Ball (MEB)
  • 相关文献

参考文献20

  • 1VAPNIK V.Statistical learning theory[M].New York:John Wiley & Sons,1998.
  • 2GRAF H P,COSATTO E,BOTTOU L,et al.Parallel support vector machines:the cascade SVM[J].Neural Information Processing Systems,2005,17:521-528.
  • 3LEE Y-J,MANGASARIAN O L.RSVM:Reduced support vector machines[EB/OL].[2010-02-20].http://citeseer.ist.psu.edu/viewdoc/summary?doi =10.1.1.102.3640.
  • 4朱方,顾军华,杨欣伟,杨瑞霞.一种新的支持向量机大规模训练样本集缩减策略[J].计算机应用,2009,29(10):2736-2740. 被引量:11
  • 5CHANG F,GUO Y-C,LIN X-R,et al.Tree decomposition for large-scale SVM problems[J].Journal of Machine Learning Research,2010,11:2935-2972.
  • 6文贵华,向君,丁月华.基于商空间粒度理论的大规模SVM分类算法[J].计算机应用研究,2008,25(8):2299-2301. 被引量:8
  • 7PLATT J C.Fast training of support vector machines using sequential minimal optimization[C]// Advances in Kernel Methods—Support Vector Learning.Cambridge:MIT Press,1999:185-208.
  • 8TSANG I W-H,KWOK J T,CHEUNG P M.Core vector machines:Fast SVM training on very large data sets[J].Journal of Machine Learning Research,2005,6:363-392.
  • 9SZEDMAK S,SHAWE-TAYLOR J.Multiclass learning at one-class complexity[R].Southampton:University of Southampton,School of Electronice and Computer Science,2005.
  • 10TSANG I W-H,KWOK J T,LAI K T.Core vector regression for very large regression problems[C]//ICML '05:Proceedings of the 22nd International conference on Machine learning.New York:ACM,2005:913-920.

二级参考文献17

  • 1曹淑娟,刘小茂,张钧,刘振丙.基于类中心思想的去边缘模糊支持向量机[J].计算机工程与应用,2006,42(22):146-149. 被引量:8
  • 2肖小玲,李腊元,张翔.提高支持向量机训练速度的CM-SVM方法[J].计算机工程与设计,2006,27(22):4183-4184. 被引量:6
  • 3高平安,蒙祖强,蔡自兴.基于粒度计算的数据分类建模研究[J].计算机应用研究,2007,24(3):37-40. 被引量:2
  • 4AGARWAL D K. Shrinkage estimator generalizations of proximal support vector machines[ C]// Proceedings of the 8th ACM SIGKDD International Conference of Knowledge Discovery and Data Mining. New York: ACM Press, 2002:173 - 182.
  • 5DANIAEL B, CAO D. Training support vector machines using adaptive clustering[ C/OL] . [2009 -02 -01]. http://www. siam. org/proceedings/datamining/2004/dm04_012 boleyd. pdf.
  • 6CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[ M].李国正,王猛,曾华军,译.北京:电子工业出版社,2006.
  • 7YAO Y Y,ZHONG Ning.Potential applications of granular computing in knowledge discovery and data mining[C]//Proc of World Multi-Conference on Systemics,Cybernetics and Informatics.[S.l.]:Computer Science and Engineering,1999:573-580.
  • 8VAPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 9VAPNIK V,GOLOWICH S,SMOLA A.Support vector method for function approximate,regression estimation,and signal processing[M].Cambridge:MIT Press,1997:281-287.
  • 10OSUNA E,FREUND R,GIRROSI F.Improved training algorithm for support vector machines[C]//PRINCIPLE J,GILES L,MONGAN N,et al.Proc of IEEE Workshop on Neural Networks and Signal Processing.Amelia Island:IEEE Press,1997:276-285.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部