期刊文献+

多子群协同进化的多目标微粒群优化算法 被引量:8

Multi-objective particle swarm optimization algorithm of multi-swarm co-evolution
下载PDF
导出
摘要 微粒群优化(PSO)算法是一种非常有竞争力的求解多目标优化问题的群智能算法,因其容易陷入局部极值,导致非劣解集的收敛性和正确性不理想。为此提出一种基于多目标分解进化策略的多子群协同进化的多目标微粒群优化算法(MOPSO_MC),算法中每个子群对应于一个多目标分解之后的子问题,并构造了一种新的速率更新策略,每个粒子跟踪自身历史最优值、子群最优值和子群邻域最优值,从而在增强算法的局部寻优能力的同时,也能从邻域子群获得进化信息,实现协同进化。最后通过仿真实验,与现在主流的多目标微粒群算法在ZDT基准测试函数上比较,验证了算法的收敛性,解分布的均匀性和正确性。 Particle Swarm Optimization (PSO) algorithm is a very competitive swarm intelligence algorithm for multiobjective optimization problems. Because it is easy to fall into local optimum solution, and the convergence and accuracy of Pareto set are not satisfactory, so the paper proposed a muhi-objective particle swarm optimization algorithm of multi-swarm coevolution based on decomposition (MOPSO_MC). In the proposed algorithm, each sub-swarm corresponded to a sub-problem decomposed by multi-objective decomposition method, and the authors constructed a new update strategy for the velocity. Each particle followed its own previous best position, sub-swarm best position and sub-swarm neighborhood best position, which resulted in enhancing the ability of local searching and getting evolutionary information from the neighborhood sub-swarm. Finally, the simulation results verify the convergence of the proposed algorithm, and the uniformity and correctness of the solution distribution with comparison of the state-of-the-art multi-objective particle swarm algorithm on ZDT test function.
出处 《计算机应用》 CSCD 北大核心 2012年第2期456-460,共5页 journal of Computer Applications
基金 江西省教育厅科技基金资助项目(GJJ10616 GJJ11616)
关键词 微粒群优化 多目标优化问题 多目标分解 协同进化 Particle Swarm Optimization (PSO) multi-objective optimization problem multi-objective decomposition co-evolution
  • 相关文献

参考文献10

  • 1JANG B K,CHIN R T.Analysis of thinning algorithms using mathematical morphology [J].Pattern Analysis and Machine Intelligence,1990,12(6):541-551.
  • 2SERRA J.Image Analysis and Mathematical Morphology [M].London:Academic Press,1982.
  • 3COELLO C A C,PULIDO G T,LECHUGA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
  • 4PENG WEI,ZHANG QINGFU.A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems[C]// Proceedings of 2008 IEEE International Conference on Granular Computing.Piscataway:IEEE Press,2008:534-537.
  • 5张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 6CHATZIS V,PITAS I.Shape-based interpolation of binary 3-D images using morphological skeletonization [J].Multimedia Computing and Systems,1999,(2):939-943.
  • 7LIANG J J,SUGANTHAN P N.Dynamic multi-swarm particle swarm optimizer[C]// Proceedings of IEEE International Swarm Intelligence Symposium.Piscataway:IEEE Press,2005:124-129.
  • 8ZITZLER E,DEB K,THIELE L.Comparison of multiobjective evolutionary algorithms:Empirical results[J].Evolutionary Computation,2000,8(2):173-195.
  • 9van VELDHUIZEN D A,LAMONT G B.Multiobjective evolutionary algorithm research:A history and analysis,TR-98-03[R].Ohio:Air Force Institute of Technology,Wright-Patterson Air Force Base,1998.
  • 10SCHOTT J R.Fault tolerant design using single and multicriteria genetic algorithm optimization[D].Cambridge:Massachusetts Institute of Technology,1995.

二级参考文献15

  • 1C A Coello Coello.A Comprehensive survey of evolutionary-based multiobjective optimization,techniques.Knowledge and Information Systems,1999,1(3):269~308
  • 2J D Schaffer.Multiple objective optimization with vector evaluated genetic algorithms.The First Int'l Conf on Genetic Algorithms,Lawrence Erlbaum,1985
  • 3D A V Veldhuizen,G B Lamont.Multiobjective evolutionary algorithm research:A history and analysis.Department of Electrical and Computer Engineering,Graduate School of Engineering,Air Force Institute of Technology,Tech Rep:TR-98-03,1998
  • 4R Eberhart,J Kennedy.A new optimizer using particle swarm theory.In:Proc of the 6th Int'l Symposium on Micro Machine and Human Science.Piscataway,NJ:IEEE Service Center,1995.39~43
  • 5J Kennedy,R Eberhart.Particle swarm optimization.IEEE Int'l Conf on Neural Networks,Perth,Australia,1995
  • 6K E Parsopoulos,M N Vrahatis.Particle swarm optimizer in noisy and continuously changing environments.In:M H Hamza ed.Artificial Intelligence and Soft Computing.Iasted:ACTA Press,2001.289~294
  • 7K E Parsopoulos,M N Vrahatis.Particle swarm optimization method for constrained optimization problems.Euro-Int'l Symp on Computational Intelligence 2002,Slovakia,2002
  • 8R C Eberhart,X Hu.Human tremor analyis using particle swarm optimization.IEEE Congress on evolutionary computation (CEC 1999),Washington,D C,1999
  • 9Y Shiand,R Eberhart.A modified particle swarm optimizer.IEEE Int'l Conf on Evolutionary Computation,Anchorage,Alaska,1998
  • 10H Yoshida,K Kawata,Y Fukuyama,et al.A particle swarm optimization for reactive power and voltage control considering voltage security assessment.IEEE Trans on Power Systems,2000,15(4):1232~1239

共引文献225

同被引文献71

引证文献8

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部