期刊文献+

基于曲线聚类的动态PET影像感兴趣区域提取新方法 被引量:1

New method for extracting region of interest of dynamic PET images based on curve clustering
下载PDF
导出
摘要 针对目前动态正电子发射断层扫描(PET)影像的感兴趣区域(ROI)提取的聚类方法忽略了时间放射性曲线(TAC)的时间序列特征,提出一种基于曲线聚类的ROI提取方法。首先用K-均值(K-Means)聚类去除背景得到心脏的位置,然后对心脏进行曲线聚类提取出心肌,最后根据像素点的空间位置关系提取血池。将该方法应用于14只小鼠的PET影像ROI勾画,实验结果表明,与K-Means和混合型的聚类方法 HCM相比,该方法能够更准确地提取出14只小鼠的血池,且具有更高的精确度和稳定性。 Concerning the problem that many current clustering methods based on kinetic characteristics ignore the continuous temporal information of Time Activity Curve (TAC), a method for Region Of Interest (ROI) extraction based on curve clustering was proposed in the paper. The proposed method contains three steps. Firstly, K-Means algorithm was used to remove the background to obtain a coarse mask of the heart. Secondly, curve clustering was used to extract myocardium from the heart obtained in the first step. Finally, blood cavity was delineated based on spatial relationship between pixels. The method was applied to extract the ROI from fourteen mouse PET images. The experimental results indicate that the proposed method is more accurate in delineating blood cavity of the fourteen mice than K-Means and Hybrid Clustering Method (HCM), and it is more precise and stable.
出处 《计算机应用》 CSCD 北大核心 2012年第2期535-537,550,共4页 journal of Computer Applications
基金 中央高校基本科研业务费专项资金资助项目(JUSRP10928) 无锡市科技支撑社会发展项目(CSE01014) 卫生部核医学重点实验室 江苏省分子核医学重点实验室开放课题(KF201104)
关键词 曲线聚类 动力学特征 感兴趣区域提取 动态PET影像 curve clustering kinetic characteristic Region Of Interest (ROI) extraction dynamic PET image
  • 相关文献

参考文献2

二级参考文献20

  • 1Reinhardt M, Beu M, Vosber g H, et al. Quantification of glucose transport and phosphorylation in human skeletal muscle using FDG PET[J]. J Nucl Med, 1999, 40: 977-985.
  • 2Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET[J]. J Nucl Med, 1999,40:1666-1675.
  • 3Wakita K, Imahori Y, Ido T, et al. Simplification for measuring input function of FDG PET: investigation of 1-point blood sampling method[J]. J Nucl Med, 2000, 41:1484-1490.
  • 4Shiozaki T, Sadato N, Senda M, et al. Noninvasive estimation of FDG input function for quantification of cerebral metabolic rate of glucose: optimization and multicenter evaluation[J]. J Nucl Med, 2000, 41:1612-1618.
  • 5Philips RL, Chen CY, Wong DF, et al. An improved method to calculate cerebral metabolic rates of glucose using PET[J]. J Nucl Med, 1995, 36:1668-1679.
  • 6Oehr P, Biersack HJ. PET in oncology: basics and clinical applications[M]. Berlin: Springer, 2000. 45-47.
  • 7Graham MM, Muzi M, Spence AM, et al. The FDG lumped constant in normal human brain[J]. J Nucl Med, 2002, 43:1157-1166.
  • 8Hasselbalch SG, Holm S, Pedersen HS, et al. The (18)F-fluorodeoxyglucose lumped constant determined in human brain from extraction fractions of (18)F-fluorodeoxyglucose and glucose[J]. J Cereb Blood Flow Metab, 2001, 21: 995-1002.
  • 9Botker HE, Bottcher M, Schmitz O, et al. Glucose uptake and lumped constant variability in normal human hearts determined with [18F]fluorodeoxyglucose[J]. J Nucl Cardiol,1997, 4:125-132.
  • 10Ng CK, Soufer R, McNulty PH. Effect of hyperinsulinemia on myocardial fluore-18-FDG uptake[J]. J Nucl Med, 1998,39: 379-383.

共引文献7

同被引文献14

  • 1YANG QUNTING, GAO TIGANG, LI FAN. Reversible robust data hiding scheme based on histogram shifting in multi - wavelet domain [ J]. International Journal of Advancements in Computing Technolo- gy, 2011,3(5): 185 -193.
  • 2PENG FEI, LEI YU-ZHOU, LONG MIN, et al. A reversible water- marking scheme for two-dimensional CAD engineering graphics based on improved difference expansion[ J]. Computer-Aided De- sign, 2011,43(8) : 1018 - 1024.
  • 3TIAN J. Reversible data embedding using a difference expansion [ J]. IEEE Transactions on Circuits and Systems for Video Technolo- gy, 2003, 13(8) : 890 - 896.
  • 4ALATFAR A M. Reversible watermark using the difference expan- sion of a generalized integer transform[ J]. IEEE Transactions on Im- age Processing, 2004, 13(8) : 1147 - 1156.
  • 5CHEN C C, TSAI Y H. Adaptive reversible image watermarking scheme[ J]. The Journal of Systems and Software, 2011,84:428 - 434.
  • 6TAN C K, NG J C, XU X T, et al. Security protection of DICOM medical images using dual-layer reversible watermarking with tamper detection capability [ J]. Journal of Digital Imaging, 2011, 24(3) : 528 - 540.
  • 7DENG X H, CHEN Z G, DENG XH, et al. A novel dual-layer re- versible watermarking for medical image authentication and EPR hid- ing[ J]. Advanced Science Letters, 2011,4(11) : 3678 - 3684.
  • 8GUO X T, ZHUANG T G. A region-based lossless watermarking scheme for enhancing security of medical data[ J]. Journal of Digital Imaging, 2009, 22( 1 ) : 53 - 64.
  • 9PENG F, LI X L, YANG B. Adaptive reversible data hiding scheme based on integer transform[ J]. Signal Processing, 2012, 92(l) : 54 -62.
  • 10FRIDRICH J, GOLJAN M, LISONEK P, et al. Writing on wet pa- per[ J]. IEEE Transactions on Signal Processing, 2005, 53(10) : 3923 - 3935.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部