期刊文献+

基于压缩感知的自适应正则化磁共振图像重构 被引量:9

Compressed sensing-adaptive regularization for reconstruction of magnetic resonance image
下载PDF
导出
摘要 当前基于压缩传感理论的正则化磁共振(CS-MR)图像重构算法普遍采用全局正则化参数,不能很好地在保持边缘和平滑噪声方面做出平衡。为此,提出一种自适应的正则化CS-MRI重构算法。结合图像稀疏性和其局部光滑性的先验知识,采用非线性共轭梯度下降算法求取最优化问题,并在迭代过程中自适应地改变局部正则化参数。新的正则化参数可以更好地恢复图像边缘,并且有利于平滑噪声,使代价函数在定义域内具有凸性;同时先验信息包含于正则化参数中,以提高图像的高频成分。实验结果表明该算法能有效权衡恢复图像边缘和平滑噪声两者的关系。 The current Magnetic Resonance (MR) image reconstruction algorithms based on compressed sensing ( CS-MR) commonly use global regularization parameter, which results in the inferior reconstruction that cannot restore the image edges and smooth the noise at the same time. In order to solve this problem, based on adaptive regularization and compressed sensing, the reconstruction method that used the sparse priors and the local smooth priors of MR image in combination was proposed. Nonlinear conjugate gradient method was used for solving the optimized procedure, and the local regularization parameter was adaptively changed during the iterative process. The regularization parameter can recover the image's edge and simultaneously smooth the noise, making cost function convex within the definition region. The prior information is involved in the regularization parameter to improve the high frequency components of the image. Finally, the experimental results show that the proposed method can effectively restore the image edges and smooth the noise.
出处 《计算机应用》 CSCD 北大核心 2012年第2期541-544,共4页 journal of Computer Applications
关键词 磁共振成像 压缩感知 自适应正则化 稀疏性 非线性重构 Magnetic Resonance Imaging (MRI) compressed sensing adaptive regularization sparsity nonlinearreconstruction
  • 相关文献

参考文献13

  • 1李卓凡,闫敬文.压缩感知及应用[J].微计算机应用,2010,31(3):12-16. 被引量:16
  • 2van den BERG E,FRIEDLANDER M P.In pursuit of a root[EB/OL].[2011-03-22].http://www.optimizationonline.org/DBFILE/2007/06/1708.pdf.
  • 3JOSHUA T,ANMANDO M,ERIC B.Sparse MRI reconstruction via multiscale 10-continuation[C]//SSP '07:IEEE/SP 14th Workshop on Statistical Signal Processing.2007:176-180.
  • 4L.Ballesteros,W.B.Croft,Resolving Ambiguity for Cross-Language Retrieval[A],Proceedings of ACM SIGIR[C],1998,64-71.
  • 5DONOHO D L,TSAIG Y.Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 6TIBSHIRANI R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society:Series B,1996,58(1):267-288.
  • 7FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J].Journal of Selected Topics in Signal Processing:Special Issue on Convex Optimization Methods for Signal Processing,2007,1 (4):586-598.
  • 8石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 9BIOUCAS-DIAS J M,FIGUEIREDO M A T,OLIVEIRA J P.Total variation-based image deconvolution:A majorization-minimization approach[C]//ICASSP 2006:2006 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway:IEEE,2006,2:278-281.
  • 10LUSTIG M,DONOHO D,PAULY J M.Sparse MRI:The application of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.

二级参考文献93

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献723

同被引文献101

  • 1王超.基于压缩感知的贪婪迭代重构算法[J].数据采集与处理,2012,27(S2):298-303. 被引量:12
  • 2沈焕锋,李平湘,张良培.一种基于正则化技术的超分辨影像重建方法[J].中国图象图形学报(A辑),2005,10(4):436-440. 被引量:15
  • 3韩玉兵,吴乐南,张冬青.基于正则化处理的超分辨率重建[J].电子与信息学报,2007,29(7):1713-1716. 被引量:11
  • 4Guo L,He Z M.A Projection on Convex Sets Super-Resolution Algorithm Using Wavelet Transform[J].IEEE,26-29,2008(10):1039-1041.
  • 5CANDES E J, TAO T. Near optimal signal recovery from random projections: universal encoding strategies [ J]. IEEE Transactions on Information Theory, 2006, S2(12) : 5406 - 5425.
  • 6FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient pro- jection for sparse reconstruction: application to compressed sensing and other inverse problems [ J]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007, 1(4) : 586 -598.
  • 7BIKKI J, DOSS B. Sparse image reconstruction using nonlinear ill- tering for compressed sensing [ J]. International Journal of Engineer- ing Research and Technology, 2012, 1(4) : 1 -6.
  • 8DAI Q, SHA W. The physics of compressive sensing and the gradi- ent-based recovery algorithms [ EB/OL]. [ 2009- 07- 04]. http:// arxiv, org./abs/0906. 1487.
  • 9BREDIES K, KUNISCH K, POCK T. Total generalized variation [J]. SIAM Journal on Imaging Sciences, 2010, 3(3) : 492 -526.
  • 10BREDIES K, VALKONEN T. Inverse problems with second-order total generalized vafation constraints [ EB/OL]. [ 2014- 04- 18]. http://www, academia, edu/5055016/Inverse_problems_with_sec- ond - order_total_generalized variation_constraints.

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部