期刊文献+

一种分段平稳随机过程自相关函数逼近模型 被引量:3

Approximation model of piecewise stationary stochastic process autocorrelation function
下载PDF
导出
摘要 为处理信号处理过程中经常遇到非平稳随机信号,可以将其划分为分段平稳随机信号,而自相关函数则可以用来反映分段平稳信号的本质特征。分析了分段平稳随机过程自相关函数的计算,针对传统的函数逼近模型计算量较大、误差较高等缺点,提出一种新的自相关函数的逼近模型,给出分段平稳随机信号的自相关函数的近似表达式,并利用牛顿迭代法进行优化计算。仿真实验证明模型计算速度快,具有较好的逼近效果,误差也明显降低,而且变化相对平缓。将其应用到数字图像信号进行模糊图像恢复,得到了很好的恢复效果。 In order to deal with the frequently encountered non-stationary random signals in signal processing, they can be divided into sub-stationary random signals, and autocorrelation function can be used to reflect the essential characteristics of sub-stationary signals. The computation of piecewise stationary stochastic process autocorrelation function was discussed. In order to reduce the amount of calculation and errors of the existing function models, a new model to approximate autocorrelation function of piecewise stationary stochastic process was proposed in this paper. The computer simulation shows that the model can effectively approximate autocorrelation function. The computing speed is faster, and the errors are much fewer and smoother. Applying the model to the restoration of blurred digital images, a very good restoration effect can be got.
出处 《计算机应用》 CSCD 北大核心 2012年第2期589-591,共3页 journal of Computer Applications
基金 江苏省自然科学基金资助项目(BK2010599) 南京气象雷达开放实验室研究基金资助项目(BJG201101)
关键词 分段平稳随机过程 泊松过程 自回归模型 自相关函数 piecewise stationary stochastic process Poisson process Auto Regress (AR) model autocorrelation function
  • 相关文献

参考文献11

  • 1王宏禹.非平稳随机信号分析与处理[M].北京:国防工业出版社,2001..
  • 2王文华,王宏禹.分段平稳随机过程的参数估计方法[J].电子科学学刊,1997,19(3):311-317. 被引量:10
  • 3DJURIC P M,KAY S M,BOUDREAUX-BARTELS G F.Segmentation of nonstationary signal[C]// ICASSP-92:1992 IEEE International Conference on Acoustics,Speech, and Signal Processing.Piscataway:IEEE,1992,5:161-164.
  • 4陈颖,李在铭.一种改进的分段平稳随机过程的参数估计方法[J].电子与信息学报,2003,25(6):735-740. 被引量:4
  • 5COHEN A,D'ALES J-P.Nonlinear approximation of random functions[J].SIAM Journal on Applied Mathematics,1997,57(2):518-540.
  • 6ARANDIGA F,COHEN A,DONAT R,et al.Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA)nonlinear multiresolution techniques[J].Applied and Computational Harmonic Analysis,2008.24(2):225-250.
  • 7COHEN A.A stochastic approach to coarsening of cellular networks[J].Muhiscale Modeling and Simulation,2010,8(2):463-480.
  • 8HASHEMI M,BEHESHTI S.Adaptive noise variance estimation in BayesShrink[J].IEEE Signal Processing Letters,2010,17(1):12-15.
  • 9RIVENSON Y,STERN A.Compressed imaging with a separable sensing operator[]].IEEE Signal processing Letters,2009,16(6):449-452.
  • 10SCHOUKENS J,LATAIRE J,PINTELON R,et al.Robustness issues of the best linear approximation of a nonlinear system[J].IEEE Transactions on Instrumentation and Measurement,2009,58 (5):1737-1745.

二级参考文献3

  • 1王文华,王宏禹.分段平稳随机过程的参数估计方法[J].电子科学学刊,1997,19(3):311-317. 被引量:10
  • 2P.M.Djuric,et a1.,Segmentation of nonstationary signal,Proc.of IEEE ICASSP,San Franciso,1992,5,161—164.
  • 3P.M.Djutic,et a1.,Order selection of autoregressive models,IEEE Trans.on Signal Processing,1992,40(1 1),2829—2833.

共引文献11

同被引文献29

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部