期刊文献+

Al-ZnO光电纳米材料的水热合成及电学性能 被引量:6

Hydrothermal Synthesis and Electrical Properties of Al-ZnO Photovoltaic Nanomaterials
原文传递
导出
摘要 采用低温水热技术,制备了铝掺杂氧化锌(Al-ZnO,AZO)纳米光电材料,利用X射线衍射、场发射扫描电子显微镜、光电子能谱仪及半导体分析仪研究了铝掺杂浓度对AZO纳米线阵列的结构、形貌、表面化学结构及电学性能的影响。结果表明:Al3+已经成功取代Zn2+,掺杂进入氧化锌的晶格,形成了Al—O键;AZO纳米线阵列为单晶结构,其取向垂直、形貌良好、致密度高;随着硝酸铝浓度的增加,AZO纳米线阵列的长径比增加、电导率增加、电阻降低。铝掺杂导致AZO纳米线阵列电学性能的改善归因于铝占据ZnO晶格中锌位置引起电子浓度的净增加。 Al-doped ZnO (AZO) photovoltaic nano-wire arrays were prepared by a low-temperature hydrothermal synthesis technique The effect of the concentration of aluminum doping on the structure, morphologies, the chemical state and the electrical properties of AZO nano-wire arrays was analyzed by X-ray diffractometer, field emission scanning electron microscope, X-ray photoelectron spec- troscope and semiconductor parameter analyzer, respectively. The results show that A1^3+ ions are doped into the ZnO lattice via the replacement of Zn^2+ ions, and an A1-O bond is formed at the interface region of ZnO. The AZO nano-wire arrays was single-crystal with vertically-oriented, well-aligned and high-density. The aspect ratio of AZO nano-wire arrays increased, the electrical conductiv- ity increased and the electrical resistance decreased with increasing the aluminum doping concentration. Aluminum doping into the AZO nano-wire arrays improved the electrical properties. The improvement could be attributed to the net increase in the concentration of electrons resulting from the AI occupying the Zn sites in the ZnO lattice.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2012年第2期294-299,共6页 Journal of The Chinese Ceramic Society
基金 陕西省自然科学基金(2011JM6010) 陕西省教育厅专项基金(2010JK655)
关键词 氧化锌 掺杂 水热合成 电学性能 zinc oxide doping hydrothermal synthesis electrical properties
  • 相关文献

参考文献20

  • 1WANG Z L. Zinc oxide nanostructures: growth, properties and applications [J]. J Phys: Condens Matter, 2004, 16: R829–R858.
  • 2?ZGüR ü, ALIVOV YA I, LIU C, et al. A comprehensive review of ZnO materials and devices [J]. J Appl Phys, 2005, 98: 041301–103.
  • 3WEINTRAUB B, ZHOU Z, LI Y, et al. Solution synthesis of one-dimensional ZnO nanomaterials and their applications [J]. Nanoscale, 2010, 2: 1573–1587.
  • 4KUCHIBHATLA S V N T, KARAKOTI A S, BERA D, et al. One dimensional nanostructured materials [J]. Prog Mater Sci, 2007, 52(5): 699–913.
  • 5HOCHBAUM A I, YANG P. Semiconductor nanowires for energy conversion [J]. Chem Rev, 2010, 110(1): 527–546.
  • 6YUN S N, LEE J, YANG J, et al. Hydrothermal synthesis of Al-doped ZnO nanorod arrays on Si substrate [J]. Physica B: Condensed Matter, 2010, 405(1): 413–419.
  • 7YUN S N, LEE J, CHUNG J, et al. Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping [J]. J Phys Chem Solids, 2010, 71(12): 1724–1731.
  • 8XUE X Y, LI L M, YU H C, et al. Extremely stable field emission from AlZnO nanowire arrays [J]. Appl Phys Lett, 2006, 89(4): 043118(1–3).
  • 9HSU C L, CHANG S J, HUNG H C, et al. Well-aligned, vertically Al-doped ZnO nanowires synthesized on ZnO:Ga/glass templates [J]. J Electrochem Soc, 2005, 152(5): G378–G381.
  • 10LIN S, TANG H, YE Z, et al. Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration [J]. Mater Lett, 2008, 62(4/5): 603–606.

同被引文献91

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部