摘要
提出一种基于GMM的区分不同性别的汉语方言识别系统,系统提取语音的RASTA-PLP特征,在方言电话语音库上进行仿真实验,结果表明在GMM模型阶数为32时,系统的识别率可达到98.66%。同时还将RASTA-PLP特征与SDC特征对比,结果表明系统识别率最高可提高6.05%,且RASTA-PLP特征在性别分类方面优于SDC。
A GMM based gender distinguishing and Chinese dialect recognition system are described.RASTA-PLP coefficients are adopted for model training.The system is tested on the dialect telephone speech corpus.Results show that the recognition rate can be as high as 98.66% when the number of components in GMM is 32.At the same time RASTA-PLP feature and shifted delta cepstrum(SDC) feature are compared.Results show that the increased performance can attain 6.05% at most,and RASTA-PLP feature is superior to SDC in gender classification.
出处
《电声技术》
2011年第12期39-41,46,共4页
Audio Engineering