摘要
The electromagnetic scattering of chiral metamaterials is simulated with the Mie series method.Based on the spherical harmonics vector function in chiral metamaterials,the electromagnetic fields inside and outside of chiral metamaterials sphere are expanded.By applying the continuous boundary condition between the chiral metamaterials and surrounding medium,and the transformation from linearly to circularly polarized electric field components,the co-polarized and cross-polarized bistatic radar cross scattering(RCS) of chiral metamaterials sphere are given.How to overcome the instability of chiral metamaterials sphere of Mie series formula is discussed.The electromagnetic scattering of chiral metamaterials,normal media and metamaterials are compared.The numerical results show that the existence of chirality ξ of chiral metamaterials can decrease the bistatic RCS compared with the same size as normal media sphere.
The electromagnetic scattering of chiral metamaterials is simulated with the Mie series method.Based on the spherical harmonics vector function in chiral metamaterials,the electromagnetic fields inside and outside of chiral metamaterials sphere are expanded.By applying the continuous boundary condition between the chiral metamaterials and surrounding medium,and the transformation from linearly to circularly polarized electric field components,the co-polarized and cross-polarized bistatic radar cross scattering(RCS) of chiral metamaterials sphere are given.How to overcome the instability of chiral metamaterials sphere of Mie series formula is discussed.The electromagnetic scattering of chiral metamaterials,normal media and metamaterials are compared.The numerical results show that the existence of chirality ξ of chiral metamaterials can decrease the bistatic RCS compared with the same size as normal media sphere.
基金
supported by the National Natural Science Founda-tion of China (61001027
41104097)
the Fundamental Research Funds for the Central Universities (ZYGX2010J046
ZYGX2011J045
ZTGX2009J041)