摘要
Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theory of dipole is presented.On the foundation of researching the principle of a time domain imaging algorithm,the back projection(BP) algorithm is derived and analyzed.Firstly,the far field sampling data are transferred to the near field sampling data by using the near field radiation theory of dipole.Then the BP algorithm is applied to target detection.The capability of the new algorithm to detect the multi-target is verified by using the finite-difference time-domain method,and the threedimensional images of targets are obtained.The coupling effect between targets for imaging is analyzed.The simulation results show that the new UWB radar imaging algorithm based on the near field radiation theory of dipole could weaken the coupling effect for imaging,and as a result the quality of imaging is improved.
Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theory of dipole is presented.On the foundation of researching the principle of a time domain imaging algorithm,the back projection(BP) algorithm is derived and analyzed.Firstly,the far field sampling data are transferred to the near field sampling data by using the near field radiation theory of dipole.Then the BP algorithm is applied to target detection.The capability of the new algorithm to detect the multi-target is verified by using the finite-difference time-domain method,and the threedimensional images of targets are obtained.The coupling effect between targets for imaging is analyzed.The simulation results show that the new UWB radar imaging algorithm based on the near field radiation theory of dipole could weaken the coupling effect for imaging,and as a result the quality of imaging is improved.
基金
supported by the Key Laboratory of Millimeter Waves of China (K200907)