期刊文献+

一种改进的基于光流法的运动目标跟踪算法 被引量:4

An Improved Moving Object Tracking Algorithm Based on Optical Flow Method
下载PDF
导出
摘要 运动目标跟踪需要从背景中准确地检测出感兴趣目标并实现有效率的跟踪。文章结合Codebook模型和光流法提出了一个新的目标跟踪方法,首先用Codebook模型检测得到感兴趣目标,然后提取感兴趣目标内部的特征点并用光流法进行跟踪,跟踪过程中实时更新用以跟踪的目标内部的特征点。当目标发生遮挡时,采用Kalman滤波器预测目标的位置,遮挡结束后根据Kalman滤波器预测的位置和Codebook检测结果重新初始化感兴趣目标内部的特征点。实验结果表明,该算法具有较好的鲁棒性和较高的准确率,能够满足实时跟踪的要求。 Moving object tracking needs to detect the object-of-interest accurately from the background and then realize tracking efficiently. This paper proposes a novel moving target tracking method combining Codebook model and optical flow method. Firstly, Codebook model is applied to obtain object-of-interest, then extract feature points within object-of-interest to track them using optical flow method. During tracking, the internal feature points of the target are updated real-timely. When occlusion happens, Kalman filter is used to predict the location of object. After recovery from occlusion, the feature points are initialized according to the location predicted by Kalman filter and the detection result of Codebook model. The experimental results show that the algorithm has a good robustness and high detection precision, and can satisfy the requirements of real-time tracking.
出处 《机电一体化》 2011年第12期18-25,74,共9页 Mechatronics
基金 国家科技支撑计划项目(2008BADA6B01) 国家自然科学基金(60674070) 美国国家科学基金(DBI-0939454)
关键词 Codebook模型 感兴趣目标 特征点 光流法 KALMAN滤波 Codebook model object-of-interest feature points optical flow method Kalman filter
  • 相关文献

参考文献11

  • 1SHIN J, KIM S, KANG S, et al. Optical flow-based real- time object tracking using non-prior training active feature model [ J ]. ELSEVIER Real-Time Imaging, 2005 ( 1 ) : 204 -218.
  • 2DENMAN S, FOOKES C, simultaneous computation of flow for object tracking [ C ] Techniques and Applications, SRIDHARAN S. Improved motion detection and optical . Digital Image Computing: 2009.
  • 3夏侯玉娇,龚声蓉,刘纯平,刘闯.结合Gaussian分布和LK光流法的视频对象分割算法[J].微电子学与计算机,2009,26(6):239-241. 被引量:9
  • 4KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking[ C]. 3rd On-line Learning for Computer Vision Workshop 2009.
  • 5KIM K, CHALIDABHONGSE T, HARWOOD D, et al. Real-time foreground-background segmentation using codebook model[ J]. ELSEVIER Real-Time Imaging, 2005 (11): 172-185.
  • 6FU C, CHUN JC, CHI JL. A linear-time component- labeling algorithm using contour tracing technique [ J ]. Computer Vision and Image Understanding, 2004 (93) : 206 -220.
  • 7LUCAS B, KANADE T. An technique with an application International Joint Conference ( IJCAI), 1981. lteratlve image registration to stereo vision [ C ]. 7th on Artificial Intelligence.
  • 8BERGEN J, BURT P, HINGORANI R, et al. Computing two motions from three frames [ C]. 3rd Int. Conf. on Computer Vision, 1990.
  • 9BradskiG,KaeblerA.学习OpenCV(中文版)[M].于仕琪,刘瑞帧,译.北京:清华大学出版社,2009.
  • 10BOUGUET J. Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithms [ C ].OpenCV Documentation, Micro-Processor Research Labs, Intel Corporation: 1999.

二级参考文献7

共引文献25

同被引文献35

  • 1Liu Xinrong,Wang Junbao,Guo Jianqiang,Yuan Hong,Li Peng.Time function of surface subsidence based on Harris model in mined-out area[J].International Journal of Mining Science and Technology,2013,23(2):251-254. 被引量:7
  • 2李金宗,原磊,李冬冬.一种基于特征光流检测的运动目标跟踪方法[J].系统工程与电子技术,2005,27(3):422-426. 被引量:5
  • 3郭秀丽,郭玉申,洪鹰.基于光流的卡尔曼滤波方法估计物体运动参数[J].机床与液压,2005,33(7):171-173. 被引量:4
  • 4孙季丰,王成清.基于特征点光流和卡尔曼滤波的运动车辆跟踪[J].华南理工大学学报(自然科学版),2005,33(10):19-23. 被引量:11
  • 5彭春华,刘建业,刘岳峰,晏磊,郑江华.车辆检测传感器综述[J].传感器与微系统,2007,26(6):4-7. 被引量:46
  • 6Baker S, Scharstein D, Lewis J P, et al. A database and e- valuation methodology for optical flow [ J ] . International Journal of Computer Vision,2011, 92( 1 ) : 1-31.
  • 7Brox T, Malik J. Large displacement optical flow: descrip- tor matching in variational motion estimation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(3) :500-513.
  • 8Xiao Ben-xian, Lu Cheng, Chen Hao. Moving object de- tection and recognition based on the frame difference algo- rithm and moment invariant features [ EB/OL ]. [ 2008 - 07- 16]. http://ieeexplore, ieee. org/xpls/abs_all, jsp? ar- number - 4605713.
  • 9Yang Zhi-qi. A new algorithm of background image extrac- tion and update in the vehicle detection system. Multimedia Technology (ICMT) [ EB/OL]. explore, ieee. org/xpls/abs_all .2011 -07-263. http ://iee- jsp? arnumber = 6002301.
  • 10Jodoin P M, Emile B, Laurent H, et al. Review and evalu- ation of commonly-implemented background subtraction al- gorithms[ EB/OL]. [ 2008-12- 08 ]. http: //ieeexplore. ieee. org/xpls/abs_all, jsp? arnumber = 4760998.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部