期刊文献+

基于物理干扰模型的分布式传输调度算法 被引量:5

Distributed link scheduling algorithm with a physical interference model
原文传递
导出
摘要 传统上对无线多跳网络中传输调度问题的研究是基于协议干扰模型的。该模型对问题的分析比较简单,通常会使调度算法的性能较差。该文提出了一种基于物理干扰模型的分布式调度算法来提高网络吞吐量。物理干扰模型反映了接收节点的信干噪比(SINR),是对现实场景中干扰的一种更精确的抽象。该文将传输调度问题建模为整数线性规划(ILP)问题,然后将其松弛为一般的线性规划(LP)问题,提出一种分布式算法来求解LP问题的最优解,进而计算传输调度问题的最优解。在该分布式算法中,每个节点只需要本地的信道信息便可以计算出最优的传输概率,从而实现最优调度。仿真结果表明:该算法可以很快收敛到最优解,并且吞吐量性能与中心式算法接近。 Traditional studies of link scheduling in wireless multi-hop networks have been based on the protocol interference model. This model facilitates problem analysis, but usually gives poor performance because of its simplicity. This paper presents a distributed link scheduling algorithm with a physical interference model to increase network throughput. The physical interference model reflects the aggregated signal to interference and noise ratio (SINR), which is a more accurate abstraction of the real conditions. This paper formulates the link scheduling problem as an integer linear programming (ILP) problem, and relaxes it to a linear programming (LP) problem. The optimal LP solution is given with a distributed algorithm to compute the optimal solution. In the distributed algorithm, each node can compute the optimal transmission probability using only local channel information for the optimal scheduling. Simulations show that the algorithm quickly converges to the optimal solution and provides good throughput performance compared with a centralized algorithm.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期1721-1726,共6页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60932005)
关键词 无线多跳网络 物理干扰模型 分布式 调度 wireless multi-hop network physical interferencemodel distributed scheduling
  • 相关文献

参考文献12

  • 1Charchouk N, Hamdaoui B. Traffic and interference aware scheduling for multiradio multichannel wireless mesh networks [J]. IEEE Trans Vehicular Technology, 2011, 60(2) : 555 - 565.
  • 2Blough D, Resta G, Santi P. Approximation algorithms for wireless link scheduling with SINR-based interference [J]. IEEE/ACM Trans Networking, 2010, 18(6) : 1701 - 1712.
  • 3Behzad A, Rubin I. Optimum integrated link scheduling and power control for multi-hop wireless networks [J]. IEEE Trans Vehicular Technology, 2007, 56(1) : 194 - 205.
  • 4Iyer A, Rosenberg C, Karnik A. What is the right model for wireless channel interference [J]? IEEE Trans Wireless Communications, 2009, 8(5) : 2662 - 2671.
  • 5Jain K, Padhye J, Padmanabhan V, et al. Impact of interference on multi-hop wireless network performance [J]. Wireless Networks, 2005, 11(4) : 471 - 487.
  • 6Gupta P, Kumar P. The capacity of wireless networks [J]. IEEE Trans Information Theory, 2000, 46(2) : 388 -404.
  • 7FAN Shuai, ZHANG Lin, REN Yong. Link scheduling with physical interference model for throughput improvement in wireless multi-hop networks [C]// Proc World Congress on Computer Science and Information Engineering. Los Angeles, USA: IEEE Press, 2009:430-434.
  • 8Horn R A, Johnson C R. Topics in Matrix Analysis [M]. Cambridge, UK: Cambridge University Press, 1991.
  • 9Horn R A, Johnson C R. Matrix Analysis [M]. Cambridge, UK: Cambridge University Press, 1985.
  • 10Boyd S P, Vandenberghe L. Convex Optimization [M]. Cambridge, UK: Cambridge University Press, 2004.

同被引文献28

  • 1黄丘林,史小卫.MIMO系统中分集增益和空间复用增益的折衷关系[J].电子与信息学报,2007,29(3):681-685. 被引量:8
  • 2PANDANA C, LIU K J R. Near-optimal reinforcement learning framework for energy-aware sensor communications [ J]. IEEE Jour- nal on Selected Areas in Communications, 2005, 23 (4): 788 - 797.
  • 3SHI Z, BEARD C C, MITCHELL K. Competition, cooperation, and optimization in multi-hop CSMA networks with correlated traffic [ J]. International Journal of Next-Generation Computing, 2012, 3 (3) : 228 -246.
  • 4WANG H S, MOAYERI N. Finite-state Markov channel - a useful model for radio communication channels [ J]. IEEE Transactions on Vehicular Technology, 1995, 44(1) : 163 - 171.
  • 5CHUNG S T, GOLDSMITH A J. Degrees of freedom in adaptive modulation: a unified view [ J]. IEEE Transactions on Communica- tions, 2001, 49(9) : 1561 - 1571.
  • 6KARMOKAR A K, DJONIN D V, BHARGAVA V K. POMDP- based coding rate adaptation for type-I hybrid ARQ systems over fa- ding channels with memory [ J]. IEEE Transactions on Wireless Communications, 2006, 5(12): 3512-3523.
  • 7BORKAR V S, EJOV V, FILAR J A, et al. Markov decision processes [ M]// Hamiltonian Cycle Problem and Markov Chains. Berlin: Springer, 2012:49-66.
  • 8SCI-ItTZ H J, KOLISCH R. Approximate dynamic programming for capacity allocation in the service industry [ J]. European Jour- nal of Operational Research, 2012, 218(1) : 239 -250.
  • 9FELDMAN R M, VALDEZ-FLORES C. Markov decision processes [ M l// Applied Probability and Stochastic Processes. Berlin: Springer, 2010:323-354.
  • 10FERNS N, PANANGADEN P, PRECUP D. Metrics for Markov decision processes with infinite state spaces [ C]// UAI' 05: Pro- ceedings of the 21 st Conference in Uncertainty in Artificial Intelli- gence. Edinburgh: AUAI Press, 2005:201 -208.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部