期刊文献+

基于SPC和神经网络的卷烟制丝生产质量监控方法研究 被引量:3

Quality Control for Cigarette Primary Process Based on SPC and Neural Network
下载PDF
导出
摘要 为解决卷烟制丝生产过程中现有SPC监控方法存在的问题,提出了基于SPC和BP神经网络的质量监控方法。首先在传统控制图的基础上,提出了适合在线监控的移动窗口式控制图,然后分别建立了用于控制图模式识别和质量缺陷原因诊断的两个神经网络模型,最后通过松散回潮工序中出口物料含水率的质量监控实例,证明了该质量监控方法的有效性。 In order to solve the problems of SPC monitoring method during the cigarette primary process,a quality control method based on SPC and BP neural network is proposed.Firstly,a moving window control charts is proposed based on the traditional control chart,which is suitable for online monitoring.Then two neural network models are established for control chart pattern recognition and fault diagnosis respectively Finally,an application example about the control of material moisture content during loosening and conditioning is presented,which verified the effectiveness of this quality control methods.
出处 《工业控制计算机》 2011年第12期65-66,68,共3页 Industrial Control Computer
关键词 神经网络 制丝 模式识别 在线质量控制 neural network tobacco primary processing pattern recognition on-line quality control
  • 相关文献

参考文献3

二级参考文献20

  • 1陈平,槐春晶,罗晶.改进的BP算法用于控制图模式识别[J].机械与电子,2005,23(3):42-44. 被引量:9
  • 2谢楠,李爱平,徐立云.面向可重组制造系统的快速诊断技术研究[J].中国机械工程,2005,16(17):1545-1549. 被引量:6
  • 3Koren Y, Heisel U, Jovane F, et al. Reconfigurable manufacturing systems [ J ]. Annals of the CIRP, 1999,48 (2) :527 -540.
  • 4Brian Hwarng H, Ang H T. A simple neural network for ARMA(p,q) time series[J]. Omega,2001 (29) :319 - 333.
  • 5Guh R S, Zorriassatine F, Tannock J D T, et al. On-line control chart pattern detection and discrimination--a neural network approach [ J ]. Artificial Intelligence in Engineering , 1999 ( 13 ) :413 - 425.
  • 6Dey S, Stori J A. A Bayesian network approach to cause diagnosis of process variations [ J ]. International Journal of Machine Tool & Manufacture,2005 (45) :75 -91.
  • 7CHENG C S. A multi-layer neural network model for detecting changes in the process mean [ J ]. Computers & Industrial Engineering, 1995,28 ( 1 ).
  • 8Samanta. B. Artificial Neural Networks and Genetic Algorithms for Gear Fault Detection [ J ]. Mechanical Systems and Signal Processing, 2004(18) : 1273 - 1282.
  • 9Jack L. B. and Nandi A. K.. Fault Detection Using Support Vector Machines and Artificial Neural Networks, Augmented by Genetic Algorithms [J]. Mechanical Systems and Signal Processing, 2002, 16(2): 373 - 390.
  • 10Hwarng H B,et al.X Control chart pattern identification through efficient off-line neural network training[J].IIE Transactions,May 1993,25(3):27-40.

共引文献14

同被引文献30

  • 1张敏,童亿刚,戴志渊,陈超英.SPC技术在制丝质量管理中的初步应用[J].烟草科技,2004,37(9):10-11. 被引量:20
  • 2张曦,阎威武,刘振亚,邵惠鹤.基于核主元分析和邻近支持向量机的汽轮机凝汽器过程监控和故障诊断[J].中国电机工程学报,2007,27(14):56-61. 被引量:33
  • 3Mishra B, Dangayach G S. Performance improvement through statistical process control: a longitudinal study [J]. International Journal of Globalization and Small Business, 2009, 3(1 ):55-72.
  • 4Zhao S J, Zhang J, Xu Y M. Monitoring of processes with multiple operating modes through multiple principal component analysis models [J]. Industrial & Engineering Chemistry Research, 2004, 43 (22) : 7025-7035.
  • 5Zhao S J, Zhang J, Xu Y M. Performance monitoring of processes with multiple operating modes through multiple PLS models [J]. Journal of Process Control, 2006, 16(7) : 763-772.
  • 6Lee Y H, Jin H D, Han C H. On-line process state classification for adaptive monitoring [J]. Industrial & Engineering Chemistry Research, 2006, 45 (9) : 3095-3107.
  • 7Camacho J, Pico J. Online monitoring of batch processes using multi-phase principal component analysis [J]. Journal of Process Control, 2006, 16 (10):1021-1035.
  • 8Xie X, Shi H B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models [J].Industrial and Engineering Chemistry Research, 2012, 51(15):5497-5505.
  • 9Zhang Y W, Wang C, Lu R Q. Modeling and monitoring of multimode process based on subspace separation [J]. Chemical Engineering Research and Design, 2013, 91(5):831-842.
  • 10Zhao C H, Yao Y, Gao F R, et al. Statistical analysis and online monitoring for multimode processes with between-mode transitions [J]. Chemical Engineering Science. 2010, 65(22) :5961-5975.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部