期刊文献+

线性模型中回归系数和误差方差的同时Bayes估计的优良性 被引量:4

Superiorities of Simultaneous Bayes Estimation of Regression Coefficients and Error-Variance in Linear Model
下载PDF
导出
摘要 在线性模型中回归系数与误差方差具有正态-逆Gamma先验时,导出了回归系数与误差方差的同时Bayes估计.在均方误差矩阵准则和Bayes Pitman closeness准则下,研究了回归系数的Bayes估计相对于最小二乘(LS)估计的优良性,还讨论了误差方差的Bayes估计在均方误差准则下相对于LS估计的优良性. The simultaneous Bayes estimators of regression coefficients and error-variance are derived in linear model under the normal-invert Gamma prior distributions.The superiorities of the Bayes estimator over the least squares(LS) estimator for regression coefficients are investigated in terms of the mean square error matrix criterion and Bayes Pitman closeness criterion,and the superiority of the Bayes estimator of error-variance over LS estimator is also discussed under the mean square error criterion.
作者 陈玲 韦来生
出处 《数学年刊(A辑)》 CSCD 北大核心 2011年第6期763-774,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No11071232) 安徽大学青年科研基金(No2011KJQN1002)资助的项目
关键词 线性模型 BAYES估计 最小二乘估计 均方误差(矩阵)准则 BAYES Pitman closeness准则 Linear model Bayes estimation Least squares estimation Mean square error(matrix) criterion Bayes Pitman closeness criterion
  • 相关文献

参考文献10

  • 1Rao C R. Linear statistical inference and its applications [M]. New York: John Wiley and Sons, 1973.
  • 2Gruber M H J. Regression estimators, a comparative study [M]. Boston: Academic Press, 1990.
  • 3Wei L S, Zhang W P. The superiorities of Bayes linear minimum risk estimation in linear model [J]. Comm Statist Theory Methods, 2007, 36:917-926.
  • 4Box G P, Tiao G C. Bayesian inference in statistical analysis [M]. Massachusetts: Addison-Wesley Press, 1973.
  • 5Broemeling L D. Bayesian analysis of linear models [M]. New York: Marcel Dekker Inc, 1985.
  • 6Kotz S, Nadarajah S. Multivariate t distributions and their applications [M]. Cam- bridge: Cambridge University Press, 2004.
  • 7Pitman E J G. The closest estimates of statistical parameters [J]. Proc Camb Phil Soc, 1937, 33:212-222.
  • 8Rao C R. Some comments on the minimum mean square error as criterion of estimation [C]//Statistics and Related Topics. Ameserdam: North Holland Press, 1981:123 143.
  • 9Rao C R, Peating J P, Mason R L. The Pitman nearness criterion and its determination [J]. Comm Statist Theory Methods, 1986, 15:3173-3191.
  • 10Keating J P, Mason R L, Sen P K. Pitman's measure of closeness: a comparison of statistical estimators [M]. Philadelphia: Society of Industrial and Applied Mathematics, 1993.

同被引文献16

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部