期刊文献+

一个具有干预策略的肺结核模型的阈值动力学行为(英文) 被引量:2

Threshold Dynamics for a Tuberculosis Model with Intervention Strategies
原文传递
导出
摘要 文献[4]研究了肺结核传播的动力学行为.该文献仅从数值模拟上分析了疾病的传播和不同策略对疾病传播的影响.本文从理论上对疾病传播和不同策略对疾病传播的影响进行了分析.主要结论如下:得到了模型的基本再生数R_0.R_0决定了疾病传播的动力学行为:如果R_0<1,则模型仅有一个无病平衡点且是局部渐近稳定的,若R_0>1则模型存在一个地方病平衡点并且疾病是一致持续的.本文还得到了无病平衡点全局渐近稳定的充分条件. A recent paper[4]explores the dynamics of the spread of tuberculosis (TB).The analysis there only numerically analyzes the disease spread and the effects of different invention strategies.In the present paper,the spread dynamics of the disease and the effects of different intervention strategies are analyzed theoretically.The main results of the model are:The basic reproduction number R_0 is calculated.It is shown that this number characterizes the disease transmission dynamics:if R_0 1,there exists only the disease-free equilibrium which is locally asymptotically stable;and if R_0 1 then there is a disease endemic equilibrium and the disease persists.Sufficient condition for the global stability of the disease-free equilibrium is also obtained.
作者 刘俊利
出处 《生物数学学报》 CSCD 北大核心 2011年第4期601-608,共8页 Journal of Biomathematics
基金 The National Natural Science Foundation of China(No.11001215 and 11101323) The Doctoral Scientific Research Foundation of Xian Polytechnic University(No. BS1002)
关键词 肺结核 阈值 绝灭 一致持续 Tuberculosis Threshold Extinction Uniform persistence
  • 相关文献

参考文献3

二级参考文献25

共引文献24

同被引文献10

  • 1Al-Sulami AA,Ali ZM,Al-Maleky DA.Rapid isolation and identification of Mycobacterium tuberculosis from pulmonary tuberculosis patients[J].Asian Pacific Journal of Tropical Medicine,2009,2(3):70-73. 被引量:3
  • 2闫萍,吴昭英.具潜伏期的无免疫型传染病动力学的微分模型[J].生物数学学报,2006,21(1):47-56. 被引量:22
  • 3YANG Yali , LIJ ianquan , MA Zhien , et al. Global stability of two models with incomplete treatment for tuber?culosis[J]. Chaos Soliton Fract , 2010, 430/12): 79-85.
  • 4ZHOU Xueyong, SHI Xiangyun , CHENG Huidong. Modelling and stability analysis for a tuberculosis model with healthy education and treatment[J]. Comp Appl Math, 2013, 32(2): 245-260.
  • 5MISHRA B K, SRIVASTAVAJ. Mathematical model on pulmonary and multidrug-resistant tuberculosis patients with vaccination[J].J Egyptian Math Soc, 2014, 22(2): 311-316.
  • 6CHOI S,JUNG E. Optimal tuberculosis prevention and control strategy from a mathematical model based on real data[J]. Bull Math Bioi, 2014, 76(7): 1566-1589.
  • 7LIU Iunli , ZHANG Tailei. Global stability for a tuberculosis model[J]. Math Comput Model, 2011, 450/2): 836-845.
  • 8AHMADIN, FATMA W ATl. Mathematical modeling of drug resistance in tuberculosis transmission and optimal control treatment[J]. Appl Math Sic: 2014, 8(92): 4547-4559.
  • 9DRIESSCHE P, WATMOUGHJ. Reproduction numbers and sub-threshold endemic equilibria for compartment?al models of disease transmission[J]. Math Biosci, 2002, 1800/2): 29-48.
  • 10杨亚莉,郭晨平,黄利航,李建全.一类考虑外源性再感染的结核病模型[J].生物数学学报,2014,29(4):597-602. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部