期刊文献+

一类随机时滞捕食者-食饵模型的动力学行为(英文) 被引量:5

Dynamics of a Delayed Predator-Prey Model with Stochastic Perturbation
原文传递
导出
摘要 研究了一类含时滞的Harrison型捕食者-食饵模型在随机扰动环境下的动力学行为.对于非时滞和时滞模型分别给出了局部和全局稳定性条件.通过白噪声分别对食饵人口增长率的和捕食者人口死亡率进行随机扰动,构建相应的随机时滞微分方程模型讨论环境噪声对其作用的动力学行为.在一定条件下,随机时滞模型存在随机最终有界的唯一全局正解且解的二阶均值是有界的.最后通过数值模拟对给出的分析结果进行了验证. In this paper,we investigate a Harrison-type predator-prey model involving discrete time delay within fluctuating environment.We show the local and global stabilities of the non-delayed and delayed model.By perturbing growth rate of prey population and death rate of predator population with white noise terms,we construct the stochastic delay differential equation model to discuss the effect of environmental noise on the dynamical behavior.Under certain conditions,the stochastic model with time delay has a unique global positive solution which is stochastically ultimately bounded, and the average in time of the second moment of the solutions is bounded.Furthermore, we perform some numerical simulations to illustrate the analytical findings.
作者 饶凤
出处 《生物数学学报》 CSCD 北大核心 2011年第4期609-624,共16页 Journal of Biomathematics
基金 National Natural Science Foundation(11071273)
关键词 Harrison型捕食者-食饵模型 时滞 白噪声 Harrison-type predator-prey model time delay white noise
  • 相关文献

参考文献3

二级参考文献23

  • 1谭德君.具有生育脉冲的Lotka-Volterra合作系统的正周期解的存在性[J].生物数学学报,2004,19(4):414-420. 被引量:7
  • 2郭子君,吴让泉.Lipschitz条件下关于半鞅SDE解的存在性与唯一性[J].工程数学学报,1995,12(2):17-24. 被引量:4
  • 3Mao X. Stochastic Differential Equations and Applications[M]. New York: Harwood, 1997.
  • 4Hofmann N, Platen E. Stability of weak numerical schemes for stochastic differential equations[J]. Computers & Mathematics with Applications, 1994, 28(10):45-57.
  • 5Ronghua L, Hongbing M, Qin C. Exponential stability of numerical solutions to SDDEs with Markovian switching[J]. Applied Mathematics and Computation, 2006, 174(2):1302-1313.
  • 6Ahmad A, Rao M R M. Asymptotically periodic solutions of n-competing species problem with time delay[J]. Journal of Mathematical Analysis and Applications, 1994, 186(2):557-571.
  • 7Bereketoglu H, Gyori I. Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay[J], ournal of Mathematical Analysis and Applications, 1997, 210(1):279-291.
  • 8Xue-zhong He, Gopalsamy K. Persistence, attractivity, and delay in facultative mutualism[J]. Journal of Mathematical Analysis and Applications, 1997, 215(1):154-173.
  • 9Kuang Y, Smith H L. Global stability for infinite delay Lotka-Volterra type systems[J]. Journal of Differential Equations, 1993, 103(2):221-246.
  • 10Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics[M]. Dordrecht: Kluwer Academic Publishers, 1992.

共引文献6

同被引文献31

  • 1李洪光,蔡君.游客教育在减少云蒙山游客乱扔垃圾行为中的有效性研究[J].河北林业科技,2005(6):17-19. 被引量:24
  • 2刘濡渊.户外游憩对天然植群之冲击.中华林学季刊,1996,29(2):35-58.
  • 3Hart Paul. New backcountry ethic: Leave no trace [J]. American Forest, 1980, 86(8):51-54.
  • 4Kuang Y, Smith H.Global stability for infinite delay Lotka-Volterra type systems[J]. Journal of DifferentialEquations, 1993, 103(4):221-246.
  • 5He X. The Lyapunov functional for delay Lotka-Vloterra-type models [J]. SIAM journal on applied mathematics, 1998, 58(4):1222-1236.
  • 6Gopalsamy K. Equations of Mathematical Ecology[M]. Dordrecht:Kluwer Academic Publishers, 1992.
  • 7Meng Liu,Dejun Fan,Ke Wang.Stability analysis of a stochastic logistic model with infinite delay[J]. Communications in Nonlinear Science and Numerical Simulation . 2013 (9)
  • 8Meng Liu,Hong Qiu,Ke Wang.A remark on a stochastic predator–prey system with time delays[J]. Applied Mathematics Letters . 2013 (3)
  • 9Maja Vasilova.Asymptotic behavior of a stochastic Gilpin–Ayala predator–prey system with time-dependent delay[J]. Mathematical and Computer Modelling . 2013 (3-4)
  • 10Jingliang Lv,Ke Wang.Asymptotic properties of a stochastic predator–prey system with Holling II functional response[J]. Communications in Nonlinear Science and Numerical Simulation . 2011 (10)

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部