摘要
以脉冲微分方程为基础建立了一个污染环境中在固定时刻对污染净化处理的单种群模型,详细研究了此模型的动力学性质,给出了种群灭绝和持续生存的充分条件.结果表明,当脉冲作用的周期小于某个阈值时,种群将持续生存;否则,种群将趋于灭绝.
In this paper,basing on impulsive differential equation,a single-species model with pulse purifying pollution at fixed time in a polluted environment is established and investigated. Sufficient conditions for permanence and extinction of the population are obtained.We show that the population is permanent when the impulsive period is less than some critical value, otherwise the population is extinct.
出处
《生物数学学报》
CSCD
北大核心
2011年第4期689-694,共6页
Journal of Biomathematics
基金
国家自然科学基金资助项目(10971001)
辽宁省高等学校优秀人才支持计划资助项目
关键词
环境污染
脉冲微分方程
灭绝
全局渐近稳定
Environmental pollution
Impulsive differential equation
Extinction
Globally asymptotic stability