期刊文献+

BTV图像超分辨率重建改进算法

Image super-resolution reconstruction based on improved bilateral total variation algorithm
下载PDF
导出
摘要 在双边滤波正则化算法的基础上,结合自然图像自身结构相似性,提出一种基于BTV的改进算法。通过在代价方程中引入表达图像非局部结构相似性的正则化项,对重建图像的解空间进一步加以限制和优化,最后通过最陡下降法求得代价方程最优解,从而完成重建。实验证明,与BTV算法相比,改进后的算法不仅能很好地抑制噪声,同时也更好地保留了图像中的细节,重建图像有着比较清晰的边缘,同时该方法也说明重建过程中更多的先验知识对重建结果的重要性。 Based on the original bilateral total variation(BTV) regularization algorithm and combined with natural image itself structural similarity,a improved algorithm about BTV is proposed.The regularization term expresses image similarity of non-local structure is used in the price equation,and this method optimizates and limits the solution space of the reconstructed image.Steepest descent method is used to obtain the optimal solution of the cost equation to achieve reconstruction.Compared with the original BTV algorithm,the experiments show that the improved algorithm can not only surpress the noise,but also restore details of reconstructed image with sharper edge,and it also shows that more priori knowledge is important for the reconstruction results.
作者 姚琦 王培康
出处 《电子测量技术》 2011年第12期42-44,共3页 Electronic Measurement Technology
关键词 超分辨率重建 正则化 总变分 双边总变分 非局部自相似 super-resolution reconstruction regularization total variation bilateral total variation nonlocal self-similarity
  • 相关文献

参考文献10

  • 1PARK S C,PARKM K, KANGM G. Super resolution image reconstruction :A technical review [J]. IEEE Signal Processing Magazine,2003,20(3) :21-35.
  • 2马成业,杨胜良,黎锁平.求解病态线性方程组的一个正则化方法[J].甘肃科学学报,2010,22(4):33-35. 被引量:6
  • 3孙希延,施浒立,纪元法.约束最小二乘法[J].仪器仪表学报,2006,27(z1):55-57. 被引量:4
  • 4娄帅,丁振良,袁峰,李晶.基于总变分的鲁棒的超分辨率重建算法[J].计算机工程与设计,2009,30(9):2241-2243. 被引量:2
  • 5占美全,邓志良.基于L_1范数的总变分正则化超分辨率图像重建[J].科学技术与工程,2010,10(28):6903-6906. 被引量:15
  • 6CHARTRAND R, WOHLBERG B. Total-variation regularization with bound constraints [C] Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference, 2010 :766.
  • 7FARSIU S, ROBINSON M D, ELAD M, et al. Fast and robust multiframe super-resolution [ C]. IEEE Trans. Image Process. ,2006,15(1):141-159.
  • 8PATANAVIJIT V, JITAPUNKUL S. An iterative super-resolution reconstruction of image sequences using fast affine block-based registration with BTV regularization [C]. Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific Conference on, 2006:1717-1720.
  • 9YANG J,WRIGHT J, HUANG T, et al. Image super resolution as sparse representation of raw image patches [C]. Computer Vision and Pattern Recognition,2008. CVPR 2008. IEEE Conference on, 2008 : 1-8.
  • 10DONG W SH, SHI G M, ZHANG L, et al. Super- resolution with nonlocal regularized sparse representation[C]. Proc. SPIE Visual Communications and Image Processing, 2010 : 1-10.

二级参考文献36

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2张伟标.多步记忆下降法求解病态线性方程组[J].上海海事大学学报,2004,25(3):94-96. 被引量:6
  • 3黄小为,吴传生,朱华平.基于奇异值分解建立的一种新的正则化方法[J].数学物理学报(A辑),2005,25(3):331-336. 被引量:5
  • 4张地,杜明辉.自适应超分辨率图像重构[J].计算机工程与设计,2005,26(8):2033-2035. 被引量:1
  • 5Sung C P, Min K P, Moon G K. Super-resolution image reconstruction: a technical overview [J]. IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 6Kim S, Su W Y. Recursive high-resolution reconstruction of blurred multiframe images[J].IEEE Transactions on Image Processing, 1993,2(4):534-539.
  • 7Elad M, Feuer A. Restoration of single super-resolution image from several blurred, noisy and down sampled measured images [J]. IEEE Transactions on Image Processing, 1997,6 (12): 1646-1658.
  • 8He H,Kondi L RMAP based resolution enhancement of video sequences using a Huber-Markov random field image prior model [C].IEEE International Conference on Image Processing,2003,2: 933-936.
  • 9Zomet A,Peleg S.Efficient super-resolution and applications to mosaics [C].International Conference on Pattern Recognition, 2000:3-8.
  • 10Barron J L,Fleet D J,Beauchemin S.Performance of optical flow techniques [J]. International Journal of Computer Vision, 1994, 12:43-77.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部