期刊文献+

Structure and Magnetism of Co-implanted TiO2

在不同的退火温度下钴注入二氧化钛结构与磁性
下载PDF
导出
摘要 Crystalline Co nanocomposites in the rutile TiO2 were synthesized by 180 keV Co ion beam implantation at temperature of 623 K with the fluence of 4×10^16 cm^-2. The structural and magnetic properties of samples with different thermal treatment were characterized by synchrotron radiation X-ray diffraction (SR-XRD), high resolution transmission electron mi- croscopy (HRTEM), Rutherford backscattering/channeling and the superconducting quantum interference device magnetometer. The SR-XRD results reveal the formation of hcp and fce phases of Co clusters, and the SR-XRD and HRTEM show that Co nanocrystals (NCs) have been formed in TiO2 after ion implantation. With increasing of annealing temperature, the transition of hcp to fcc Co is observed, and the Co NCs sizes were increased with increasing post-annealing temperature. At annealing temperature 1073 K, the lattice damaged is significantly removed compared with the virgin sample. The Co NCs forming inside TiO2 are the major contribution of the measured ferromagnetism.
作者 丁斌峰
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第6期724-728,I0004,共6页 化学物理学报(英文)
基金 The work was supported by the National Natural Science Foundation of China (No.10875004 and No.11005005), and National Basic Research Program of China (No.2010CB832904), the 2011 Self-Raised Funds Project of HeBei Science and Technology Bureau (No.11316736), and the 2011 Key Project of the Langfang Teachers College (No.LSZZ201101).
关键词 NANOCOMPOSITE Ferromagnetic material Ion implantation 纳米物质 磁性材料 离子注入
分类号 O [理学]
  • 相关文献

参考文献18

  • 1A. Nefedov, N. Akdogan, H. Zabel, R. I. Khaibulin, and L. R. Tagirov, Appl. Phys. Lett. 89, 182509 (2006) .
  • 2S. W. Jung, S. J. An, G. C. Yi, C. U. Jung, S. I. Lee, and S. Cho, Appl. Phys. Lett. 80, 4561 (2002) .
  • 3A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. V. Pashkova, S. J. Pearton, K. Ip, R. M. Frazier, C. R. Abernathy, D. P. Norton, J. M. Zavada, and R. G. Wilson, Mater. Sci. Semicond. Process. 7, 77 (2004) .
  • 4Y. Xin, J. Lu, P. A. Stampe, and R. J. Kennedy, Appl. Phys. Lett. 88, 112512 (2006).
  • 5S. Zhu, L. M. Wang, X. T. Zu, and X. Xiang, Appl. Phys. Lett. 88, 043107 (2006).
  • 6S. Zhou, G. Talut, K. Potzger, A. Shalimov, J. Grenzer, W. Skorupa, M. Helm, J. Fassbender, E. Cizmar, S. A. Zvyagin, and J. Wosnitza, J. Appl. Phys. 103, 083907 (2008).
  • 7A. Meldrum, L. A. Boatner, and C. W. White, Nucl. Instrum. Meth. B 178, 7 (2001).
  • 8J. F. Ziegler, J. P. Biersack, and U. Littmark, Stopping and Range of Ions in Matter, New York: Pergamon Press, 97 (1985).
  • 9S. S. B. D. Cullity, Elements of X-ray Diffraction, 3rd Edn., Upper Saddle River: Prentice Hall Press, 233 (2001).
  • 10I. Motoaki, T. Shinji, H. Nobuaki, K. Takayuki, A. Hiroshi, and I. Akasaki, Appl. Surf. Sci. 45, 159 (2000).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部