期刊文献+

视频监控中人脸识别算法稳定性的改进 被引量:4

Stability Improvement of Face Recognition Algorithm in Video Monitor
下载PDF
导出
摘要 如果单纯地采用静态人脸识别算法对视频图像进行检测、识别,忽略了视频中重要的前后帧相关的特性,会造成识别结果的不稳定。为了解决识别结果不稳定的问题,对视频监控中的人脸识别算法进行了改进,根据视频前后帧相关性对人脸运动进行估计并将其应用在视频监控的软件产品中。实验证明,该算法提高了传统单帧人脸识别算法的稳定性,具有较好的应用价值。 Most of the traditional face detecting algorithms recognize face only in a static image and ignore the important relationship between video frames and that will lead to unstable results.This paper improves the face recognition algorithm according to the relationship between video frames and applies it to a video monitor product.Experiments show that the improved algorithm enhances the stability of recognition result and has a preferable application value.
作者 陈皓 霍星
出处 《工程图学学报》 CSCD 北大核心 2011年第6期53-56,共4页 Journal of Engineering Graphics
基金 合肥工业大学青年教师基金资助项目(081002F)
关键词 模式识别 人脸检测 运动估计 人脸识别 视频监控 pattern recognition face detection motion estimation face recognition video monitor
  • 相关文献

参考文献9

二级参考文献43

  • 1崔国勤,高文.基于双层虚拟视图和支持向量的人脸识别方法[J].计算机学报,2005,28(3):368-376. 被引量:14
  • 2陈秀宏,王郁武,杨静宇.两目标最优图像鉴别分析及其在人脸识别中的应用[J].计算机辅助设计与图形学学报,2006,18(9):1357-1361. 被引量:1
  • 3Shashua A, Tammy R R. The quotient image: class-based re-rendering and recognition with varying illumination [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2001, 23(2): 129-139.
  • 4Brunelli R. Estimation of pose and illumination direction for face processing [R]. USA: Massachusetts Institute of Technology, 1994.
  • 5Hallinan P W. A low-dimensional representation of human faces for arbitrary lighting conditions[C]//IEEE Conference on Computer Vision and Pattern Recognition, Seattle: IEEE Computer Society, 1994: 995-999.
  • 6Shashua A. On photometric issues in 3D visual recognition from a single 2D image [J]. Journal of Computer Vision, 1997, 21: 99-122.
  • 7Georghiades A S, Belhumeur P N. Illumination cone models for face recognition under variable lighting: Face[C]//IEEE Conference on Computer Vision and Pattern Recognition, USA: IEEE Computer Society, 1998: 52-59.
  • 8Kouzani A Z, He F, Sammut K, et al. Illumination invariant face recognition[C]//IEEE Conference on System, Man and Cybernetics, 1998, 5: 4240-4245.
  • 9Zhao W Y, CheUappa R. SFS based view synthesis for robust face recognition[C]//The 4th Conference on Automatic Face and Gesture Recognition, Washington IEEE Computer Society, 2000: 285-292.
  • 10Basri R, Jacobs D. Lambertian reflectance and linear subspaces [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003, 25(2): 218-233.

共引文献277

同被引文献32

  • 1温福喜,刘宏伟.基于2D-PCA和2D-LDA的人脸识别方法[J].计算机应用研究,2007,24(8):201-203. 被引量:7
  • 2金连文,徐秉铮.基于多级神经网络结构的手写体汉字识别[J].通信学报,1997,18(5):21-27. 被引量:19
  • 3刘瑾,徐可欣,陈小红,吴萍,赵学玲.采用图像融合技术的多模式人脸识别[J].工程图学学报,2007,28(6):72-78. 被引量:10
  • 4ARANDJELOVIC OGNJEN,ZISSERMAN ANDREW. Automatic face recognition for film character retrieval in featurelength films[A].San Diego:IEEE,2005.860-867.
  • 5YANG C J,DURAISWAMI R,DAVIS L S. Efficient mean-shift tracking via a new similarity measure[A].San Diego:IEEE,2005.176-183.
  • 6Turk M, Pentland A. Eigenfaces for recognition [J]. Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 7Belhtmeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [J]. Pattern Analysis and Machine Intelligence, 2013, 19(7): 711-720.
  • 8Gao S H, Kui J, Zhuang L S, et al. Neither global nor local: regularized patch-based representation for single sample per person face recognition [J]. International Journal of Computer Vision, 2015, 111(3): 365-383.
  • 9Liu C J, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition [J]. Image Processing, 2002, 11(4): 467-476.
  • 10Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [J]. Pattern Analysis and Machine Intelligence, 2009, 31 (2): 210-227.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部